
Abstract of Thesis

i

Zusammenfassung der Arbeit

Abstract of Thesis

Fachbereich:

Department: :

Studiengang:

University course: :

Thema:

Subject:

Zusammenfassung:

Abstract :

Verfasser:

Author:

Betreuender Professor/in: :

Attending Professor:

WS / SS :

Investigation and Test of Xamarin.Essentials in Visual Studio

on Android Phone

This thesis intends to investigate the possibilities and limitations of Xamarin.Essentials on

Android phone. Xamarin.Essentials is published to simplify the access to the features of

different platforms, which gives a huge support to the cross-platform development. A mobile

application including the introduction and presentation of the features is implemented to

achieve the goal. This thesis serves as both a guideline for developing applications with

Xamarin.Essentials and a documentation for investigating different performance of

Xamarin.Essentials on various platforms. In this thesis, half of the features are tested and an

image picker is implemented without Xamarin.Essentials. The introduction of replacing the

application icon is contained as well. The investigation of this NuGet package shows that it

reduces the workload to get access of sensors and information on various devices. The

features of the package can be available as long as they are supported on the device.

However, the huge package will be the burden of the application if only one single feature is

used. Despite of this limitation and the deficiency of functions in some features,

Xamarin.Essentials has shown the potential to be a suitable tool to implement cross-platform

applications. More useful features might be supplemented into the package.

Electrical Engineering and Computer Science

Information Technology

Qin Lu

Prof. Dr. Jörg Bayerlein

SS <2019>

Table of Contents

ii

Table of Contents

Abstract of Thesis .. i

Table of Contents ... ii

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Goal .. 1

1.3 Organization ... 1

2 Background information and basic knowledge .. 2

2.1 Xamarin.Forms and C# .. 2

2.2 Xamarin.Essentials ... 2

2.3 Visual Studio .. 2

2.4 Windows IoT and Raspberry Pi ... 3

3 Installation and Configuration ... 4

3.1 Visual Studio Installation ... 4

3.2 Emulator Configuration .. 5

3.3 Physical Devices Prepared ... 6

4 Features and additional tasks ... 7

4.1 Accelerometer .. 9

4.2 Application information ... 13

4.3 Barometer ... 14

4.4 Battery .. 14

4.5 Clipboard .. 16

4.6 Color Converters .. 17

4.7 Compass ... 18

Table of Contents

iii

4.8 Connectivity ... 19

4.9 Detect Shake ... 20

4.10 Device Display Information ... 21

4.11 Device Information... 22

4.12 Email .. 23

4.13 File System Helpers.. 25

4.14 Flashlight .. 28

4.15 Geocoding .. 29

4.16 Geolocation .. 30

4.17 Gyroscope... 32

4.18 Launcher ... 34

4.19 Additional Task .. 36

4.19.1 Image Picker .. 36

4.19.2 Photo from Camera .. 38

4.19.3 Other Implementation .. 41

4.19.4 Problems of the other half of the features on Android ... 42

5 Conclusion and outlook ... 43

Acknowledgments ... 44

Bibliography ... 45

Appendix A - List of figures .. 50

Appendix B - List of listings .. 51

Appendix C - List of tables .. 53

Introduction

1

1 Introduction

1.1 Motivation

The world currently confronts the fast development of mobile smartphones. Meanwhile, iOS,

Android, UWP become the biggest and most critical mobile platforms. In order to reduce the

duplication and effort on programming on different platforms, the investigation on

cross-platform application development keeps expanding. According to Alberto Furlan, the

cross-platform application market has exceeded 7.5 billion dollars until 2018 [1]. As one of

the most powerful cross-platform developing tool, Xamarin provides the possibility that

applications on various platforms can be developed by shared codes without considering

different user interfaces [23]. At the same time, Xamarin.Essentials is published to simplify

the access to the features of different platforms, including accelerometer, barometer and so on.

Therefore, it is highly desirable that definite documentation about Xamarin.Essentials can be

provided.

1.2 Goal

This thesis intends to investigate the possibilities and limitations of Xamarin.Essentials on

Android phone. To realize this intention, this thesis tries to find a good demonstration of the

features in Xamarin.Essentials. In other words, a mobile application including the introduction

and presentation of the features is implemented. Additionally, this thesis can offer as a

guideline for those who aim at developing with Xamarin.Essentials or as the documentation

for those who focus on investigating the different behaviors of Xamarin.Essentials on various

platforms.

1.3 Organization

This thesis contains five essential sections. The first section aims at the introduction of the

whole thesis. In the second section, some basic knowledge and background information about

associated software and API (application programming interface) are presented. In the next

section, the preparation steps of software installation and emulator configuration are provided.

In the fourth section, the detailed specification and behaviors of the first half of the features of

Xamarin.Essentials on different platforms is documented, which is the most essential part of

the thesis. Several additional tasks are also included in this section. In the last section, the

conclusion and evaluation of this thesis are presented, and suggestions for further research are

mentioned as well.

Background information and basic knowledge

2

2 Background information and basic knowledge

Xamarin is a software company of Microsoft, which was founded in May 2011.

Xamarin.Forms was introduced on May 28, 2014 (Petzold, 2016). Xamarin is a suitable tool

for projects about C# and .NET (Reynolds, 2014). One of the most important reasons is that

developers do not need to waste their time learning Java or Objective-C to develop iOS or

Android applications. In this case, Xamarin can be a substitute for development. Additionally,

Xamarin has the benefit of code reuse. It is estimated that codes regarding user interface or

device capabilities can be recycled on the platform of Android, iOS and WP8 at most 80

percent (Reynolds, 2014).

2.1 Xamarin.Forms and C#

Xamarin.Forms is a cross-platform development framework, which can be used to develop

mobile applications for Android, iOS and Universal Windows Platform (UWP). As mentioned

before, codes about the definition of the user interface can be reused due to the user interface

abstraction of Xamarin.Forms.

C# is an articulate programming language. However, it is uncomplicated for developers who

have an intimate knowledge of C, C++ or Java [7]. C# syntax not only abandons the intricacy

part of C++ but also provides new impressive features which are not contained in Java [7].

One of the most typical examples is lambda expression, which can reduce the code needed to

be written. Certainly, C# is an objective-oriented programming language like Java. In addition,

it can be used to write programs that can run on the .NET Framework. That means, the .NET

Framework class library can be utilized by the programs if .NET is accessible on different

platforms. As a result, code written in C# based on Xamarin.Forms is platform independent

(Petzold, 2016).

2.2 Xamarin.Essentials

Xamarin.Essentials provides various API (application programming interface) on Android,

iOS and UWP platforms. Although each platform has a distinct operating system, the

cross-platform mobile application developed with these APIs can be accessed from shared

code independent of the user interface [23].

2.3 Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) which can be used

to develop variable applications including mobile ones [22]. It supports 36 different

Background information and basic knowledge

3

programming languages including C#. Moreover, there exists plenty of convenient features,

which make the development of application efficient. For instance, the refactoring feature

helps developers to change all the names of identical parameters or methods at the same time.

Besides, it is allowed for developers to choose and install workloads in line with their needs.

In this thesis, different emulators with different Android APIs can be chosen, which is the

most vital reason to develop with Visual Studio.

2.4 Windows IoT and Raspberry Pi

The Raspberry Pi is a single-board computer which supports peripheral devices such as

keyboard and mouse. It supports various operating systems including Windows IoT. Windows

IoT is designed by Microsoft for embedded systems. It allows an additional task that is testing

the developed demonstration application of Xamarin.Essentials on Windows IoT based on

Raspberry Pi.

Installation and Configuration

4

3 Installation and Configuration

In this section, the installation of Visual Studio and the configuration of the Android emulator

will be introduced. The way to improve the performance of the emulator will be contained in

the configuration part as well.

3.1 Visual Studio Installation

Firstly, Visual Studio IDE can be downloaded from the web page of Microsoft Visual Studio

[44]. After running the installation application, the workload which named as “Mobile

development with .NET” should be selected to develop a cross-platform application with

Xamarin in Figure 3.1.

Figure 3.1 Workload selection

As a default, “Universal Windows Platform tools for Xamarin” is a not chosen option in the

installation details. Since Xamarin.Essentials should be investigated on UWP as well, this

option should be selected to guarantee the access of the build of the test application on UWP

(Figure 3.2). After these selections, the installation can be started.

Figure 3.2 Installation details

Installation and Configuration

5

3.2 Emulator Configuration

Using emulator is a good approach to check written programs before running them on

physical devices. Nevertheless, it usually needs great effort for computers to run an emulator.

These computers usually seem to be high configuration to ensure the affluence of the running

of the emulator. Currently, with the help of the announcement of Windows Hypervisor

Platform in the update of Windows on 10th of April in 2018 [47], it is possible to handle

Hyper-V as a hardware accelerator for Android emulators. This would improve the

performance of the emulators running on low-configuration computers to some extent.

In order to realize this, the Hyper-V and Windows Hypervisor Platform should be turned on in

Windows Features interface. Figure 3.3 shows an example of this page. After selected these two

features, the computer should be restarted to allow the system to enable them.

Figure 3.3 Windows Features

Secondly, after clicking Tools > Android > Android SDK managers, the Android SDK Tools and

Android Emulators should be updated to the latest version. After that, an emulator flag is required to

ensure that the features are used while the emulator is running. This can be realized in two ways. The

first one is to create a file as advancedFeatures.ini in the path of C:\Users\<your-username>\.android\.

The second one is to start the emulator in the “Command Prompt” with the command “-feature

WindowsHypervisorPlatform”. The detailed steps are as following. Entering the installation path of

the Android emulator is the first step. In my computer, the command should be “cd C:\Program Files

(x86)\Android\android-sdk\emulator”. Then the name of the Android SDK should be found with the

command “emulator -list-avds”. Finally, one of the lists should be chosen and the emulator can be

started with the command “emulator -avd Android_Accelerated_x86_Oreo -feature

WindowsHypervisorPlatform” as an example in Figure 3.4. The emulator started with the latter

method will be terminated if the “Command Prompt” window is closed.

Installation and Configuration

6

Figure 3.4 Command Prompt View

In my personal computer, the Android emulator needs 24 seconds to be started without Hyper-V,

while only 13 seconds with the help of the hardware acceleration. The affluence while running

applications in the emulator is apparently improved as well.

3.3 Physical Devices Prepared

A smartphone “Xiaomi 5” and a tablet “Samsung SM-T585” are used for the test on the

Android platform. A device called “iPhone 6” is prepared for the test on the iOS platform. A

device called “Surface” is prepared for the test on the UWP platform. Additionally, Raspberry

Pi with the system “Windows IoT” is also used to investigate the availability of

Xamarin.Essentials on other platforms.

Features and additional tasks

7

4 Features and additional tasks

This section will show the first half features of Xamarin.Essentials and implementation

processes and behaviors on different platforms of these features. An additional task will be

included as well. The rest of the features is contained in another thesis written by Mr. Wang

[50]. To provide a better specification, a demonstration mobile application called

“EssentialsDemo” is developed. Since the purpose is to provide a better understanding of the

features, the application is designed with “Master-Detail Page” in Xamarin.Forms. In this

presentation form, a list of features shows on the left side of the screen, and the detail of each

feature shows on the right side. A slight performance difference of the “Master-Detail Page”

among three platforms is shown in Figure 4.1 Steps of the implementation of the

“Master-Detail Page” can be found in the official document [9].

Figure 4.1 Master-Detail Page on Android, iOS & UWP

In this application, no MVVM (Model-View-ViewModel) pattern is used, which means the

user interface, presentation logic and business logic are written in one file. This pattern is a

variation of MVC (Model-View-Controller) pattern. User interfaces are generally determined

in Views, and ViewModels determine the presentation logic of Views. Other logic, such as

business logic, is determined in Models. Models also provide model data support [46]. Each

feature has its own demonstration class “ContentPage”. It is probably crucial for large projects

to clarify them, but for this test project, there is no need to adapt this pattern to each feature

demonstration, which would increase duplication of codes.

Features and additional tasks

8

Figure 4.2 MVVM pattern [46]

Before using these features, one important step is to install Xamarin.Essentials NuGet

package to projects of Android, iOS and UWP [10]. Although the behavior of these features

on the Android platform is primarily considered in this thesis, it is necessary for those who

want to develop a cross-platform application to add the package to all platform projects.

Otherwise, the application will not run on a specific platform without the package. The detail

of the installation is below. First, create a mobile application project as shown in Figure 4.3.

Next, right click on the solution and select “Manage NuGet Packages for Solution”. Finally,

search for the package named “Xamarin.Essentials” and add it to all projects as shown in

Figure 4.4.

Figure 4.3 Create Mobile Apps Project

Figure 4.4 Install Xamarin.Essentials

Features and additional tasks

9

On Android platform, it is necessary to initialize all activities in the method “OnCreate” in the

file “MainActivity.cs” and to handle the permissions by adding method

“OnRequestPermissionsResult” to the file as shown in Listing 4.1.

1. protected override void OnCreate(Bundle savedInstanceState)

2. {

3. base.OnCreate(savedInstanceState);

4. Xamarin.Essentials.Platform.Init(this, savedInstanceState);

5. }

6. public override void OnRequestPermissionsResult(int requestCode, string[] pe

rmissions, [GeneratedEnum] Android.Content.PM.Permission[] grantResults)

7. {

8. Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode, perm

issions, grantResults);

9. base.OnRequestPermissionsResult(requestCode, permissions, grantResults);

10. }

Listing 4.1 Codes added in the “MainActivity.cs”

4.1 Accelerometer

An accelerometer is a hardware-based motion sensor on the Android platform [2]. It directly

measures acceleration force on the three-dimensional coordinate axes with the physical

elements on the device. There is one property “IsMonitoring”, two methods “Start” and “Stop”

and two events “ReadingChanged” and “ShakeDetected” in the class “Accelerometer”. The

event “ShakeDetected” will be described later in Section 4.9.

The speed of the sensor should be determined first. There are four kinds of speed which are

“Default”, “UI”, “Game” and “Fastest”. The measurement frequency of them is from low to

high as shown in Table 4.1. The frequency means that the sensor detects changes at a speed of

how many times per second.

Type of Speed Default UI Game Fastest

Frequency (s-1) 5 18 53 205

Table 4.1 Frequency of the sensor speed

The data are measured with codes in Listing 4.2 on the author’s personal device. However, the

frequency could be influenced by the performance of the device. Namely, there might be a

difference between various devices with different platforms.

Features and additional tasks

10

1. void Accelerometer_ReadingChanged(object sender, AccelerometerChangedEventArgs e) {

2. count++; // Sum when there is new reading

3. }

4. if (Accelerometer.IsMonitoring) {

5. Accelerometer.Stop();

6. stopWatch.Stop();

7. TimeSpan timeSpan = stopWatch.Elapsed; // Duration of measurement

8. label.Text = Math.Round(timeSpan.TotalSeconds, 2) + "; " + count + "; "

9. + Math.Round((count / Math.Round(timeSpan.TotalSeconds, 2)), 0);

10. stopWatch = new Stopwatch();

11. count = 0; // Counters for frequency measurement

12. } else {

13. Accelerometer.Start(speed);

14. stopWatch.Start();

15. }

Listing 4.2 Frequency measurement

The “ReadingChanged” event should be registered in the constructor of the class. To better

present the feature, a rotation picture is used instead of three data on three coordinate axes. In

this coordinate, the direction of the X-axis is horizontally towards the right side of the device.

The direction of the Y-axis is vertically towards the top of the device. The direction of Z-axis

is vertical to the X-axis and Y-axis, towards outside of the device (Figure 4.5).

Figure 4.5 Device coordinate [3]

According to the acceleration of the phone, the picture will always be horizontal to the earth,

which can show the gravity orientation (Figure 4.6). The basic implementation of sensor

speed definition, event registration and utilization of “IsMonitoring”, “Start” and “Stop”

methods are shown in Listing 4.3. The presentation logic of the picture is also included from

the 11th to the 18th line in Listing 4.3. It uses the values from the event “ReadingChanged” to

Features and additional tasks

11

calculate the rotation angle of the image, which makes the picture seems to be always

horizontal to the ground. The calculation is based on the inner product principle of Euclidean

space. If the speed of the sensor is set to “Game” or “Fastest”, class “MainThread” should be

used to avoid the event handler not to return on UI thread. In other words, the manipulation on

the UI controller might be ignored [24]. The detailed implementation of “MainThread” can be

seen in the other thesis from Mr. Wang [50].

1. SensorSpeed speed = SensorSpeed.Fastest; // Set speed delay for monitoring changes.

2. public AccelerometerTest() {

3. // Register for reading changes

4. Accelerometer.ReadingChanged += Accelerometer_ReadingChanged;

5. }

6. void Accelerometer_ReadingChanged(object sender, AccelerometerChangedEventArgs e) {

7. // Process Acceleration X, Y, and Z

8. var x = e.Reading.Acceleration.X;

9. var y = e.Reading.Acceleration.Y;

10. var z = e.Reading.Acceleration.Z;

11. if (y >= 0)

12. image.RotationX = Math.Acos(z / Math.Sqrt(y * y + z * z)) * 180 / Math.PI;

13. else

14. image.RotationX = 360 - Math.Acos(z / Math.Sqrt(y * y + z * z)) * 180 / Math.PI;

15. if (x >= 0)

16. image.RotationY = Math.Acos(z / Math.Sqrt(x * x + z * z)) * 180 / Math.PI;

17. else

18. image.RotationY = 360 - Math.Acos(z / Math.Sqrt(x * x + z * z)) * 180 / Math.PI;

19. }

20. // Switch on / off the sensor

21. public void ToggleAccelerometer() {

22. if (Accelerometer.IsMonitoring)

23. Accelerometer.Stop();

24. else

25. Accelerometer.Start(speed);

26. }

Listing 4.3 Basic implementation of Accelerometer [24]

The reading data is measured with unit G, which equals to 9.81 m/s2, the gravity from the

earth. For instance, when the device lies stably on a table, the value of X-axis and Y-axis

should be zero, and the value of Z-axis should be a positive one. This indicates that the

accelerometer measures the acceleration force against the earth gravity. When using the data

from the accelerometer, a big noise can be found through the data. To eliminate the noise, one

of the low-pass filters is used as shown in Listing 4.4. The new value generated from this

filter is the average of ten previous values. A list is used to manipulate the number of previous

Features and additional tasks

12

values. There will be a delay in the output value if the amount is set too large. The amount can

be could be changed with the entry as shown in Figure 4.6.

1. List<float> list = new List<float>();

2. int N = 10;

3. while (list.Count > N - 1) {

4. list.RemoveAt(0);

5. }

6. list.Add(data);

7. data = filter(data);

8. float filter(List<float> list) {

9. float sum = 0;

10. foreach (float element in list) {

11. sum += element;

12. }

13. return sum / list.Count;

14. }

Listing 4.4 Arithmetic average low-pass filter

The performance of the accelerometer on the Android, iOS and UWP platform are shown in

order in Figure 4.6. As mentioned before, the rotation of the picture indicates the orientation

of gravity after the accelerometer is started. Meanwhile, the acceleration force on the three

axes is shown on the screen. After the accelerometer stops measuring, the measurement period,

the times of the event “ReadingChange” triggered and the frequency are shown in order in a

string. There also exists a picker to select different sensor speed. It is necessary to restart the

accelerometer after changing the speed.

Figure 4.6 Performance of Accelerometer on Android, iOS & UWP

This feature gives no response instead of an error message after clicking the button on

Windows IoT base on Raspberry Pi.

Features and additional tasks

13

4.2 Application information

There are five properties which are “BuildString”, “Name”, “PackageName”, “Version” and

“VersionString” in the class “AppInfo”. For the Android platform, these properties are

retrieved from nodes in the file “AndroidManifest.xml” [25]. The only method contained in

the class is “ShowSettingsUI”. The properties can be simply accessed as shown in Listing 4.5.

The default setting page of the platform will be shown with the method. Some permissions of

the application can be given on this page.

1. var appName = AppInfo.Name; // Application Name

2. var packageName = AppInfo.PackageName; // Package Name/Application Identifier

3. var version = AppInfo.VersionString; // Application Version

4. var build = AppInfo.BuildString; // Application Build Number

5. AppInfo.ShowSettingsUI(); // Display settings page

Listing 4.5 AppInfo implementation [25]

For the Android platform, the content of the five properties can be changed manually in the

file “AndroidManifest.xml”. Each property is related to an attribute of a node in the file. For

the iOS platform, the content of the five properties can be changed in the file “Info.plist”. The

management file of UWP is “Package.appxmanifest”.

The performance of this feature on Android, iOS and UWP are shown in order in Figure 4.7.

The default package name and app name on these platforms are different. The default setting

page of the application will be shown after clicking the second button. This feature is valid on

Windows IoT based on Raspberry Pi as well and the performance is the same as that on UWP.

The probable reason is that they are both Windows platforms.

Figure 4.7 Performance of Application Information on Android, iOS & UWP

Features and additional tasks

14

4.3 Barometer

Barometer belongs to the category of environmental sensors, which is based on hardware [3].

Namely, a barometer measures the environment pressure directly through a physical segment

in the device. Similar to the accelerometer, there exists one property “IsMonitoring”, two

methods “Start” and “Stop” and one event “ReadingChanged” in the class “Barometer”. The

speed of the sensor and the registration of reading changes can be set as described in Section

4.1. The utilization of the property and two methods can be referred to the official document

[13]. Since the sensor measures the air pressure around the device, there might be a difference

between the pressure in the weather forecast and the data. It could also be influenced by the

accurateness of the physical segment in the device.

Figure 4.8 Performance of Barometer on Android, iOS & UWP

The performance of this feature on Android, iOS and UWP are shown in order in Figure 4.8.

Unfortunately, the author has not a device with the UWP platform which can validate this

feature. In addition, this feature is not valid on Windows IoT based on Raspberry Pi. It will

throw a “FeatureNotSupported” exception similar to that on UWP in Figure 4.8.

4.4 Battery

Before implementing the feature, the permission to get access to the information on the

battery should be added manually. The code in Listing 4.6 should be added in the file

“AssemblyInfo.cs” under the “Properties” in the Android project. Another way to add

permission is to add the code in Listing 4.7 into the file “AndroidManifest.xml” under the

“Properties”.

Features and additional tasks

15

1. [assembly: UsesPermission(Android.Manifest.Permission.BatteryStats)]

Listing 4.6 Battery permission in C# [26]

1. <uses-permission android:name="android.permission.BATTERY_STATS" />

Listing 4.7 Battery permission in XML [26]

There exist four properties which are “ChargeLevel”, “EnergySaverStatus”, “PowerSource”

and “State” in the class “Battery”. Two events which are “BatteryInfoChanged” and

“EnergySaverStatusChanged” are also included in this class. The property “ChargeLevel” can

return a double value between 0.0 and 1.0. “EnergySaverStatus” has enumeration values

whose fields are “On”, “Off” and “Unknown”. “PowerSource” has enumeration values whose

fields are “AC”, “Battery”, “Unknown”, “Usb” and “Wireless”. “State” has enumeration

values whose fields are “Charging”, “Discharging”, “Full”, “Notcharging”, “Notpresent” and

“Unknown” [30]. “Notcharging” means a state which is neither charging nor discharging.

According to the official document [26], “PowerSource” can only return values of “AC” or

“Battery” on the iOS and UWP platform. These properties can be set as described in Section

4.2 or can be implemented as shown in the official document [26]. The registration of two

events is also the same as mentioned before in Section 4.1.

Figure 4.9 Performance of Battery on Android, iOS & UWP

The performance of this feature on Android, iOS and UWP are shown in order in Figure 4.9.

The information of the battery is shown by clicking the button. It will update automatically if

the state of the battery is changed. The performance on Windows IoT based on Raspberry Pi

is shown in Figure 4.10. The state is “NotPresent”, which means that there is no battery in the

device.

Features and additional tasks

16

Figure 4.10 Performance of Battery on Windows IoT

4.5 Clipboard

There exists only one property “HasText” and two methods called “GetTextAsync” and

“SetTextAsync” in the class “Clipboard” [31]. The property has a boolean value which shows

whether there is text in the clipboard or not. These two methods can be simply implemented

as shown in Listing 4.8.

1. // Set text in the entry to the clipboard

2. await Clipboard.SetTextAsync(entry.Text);

3. // Get text from the clipboard

4. label.Text = await ShowClipboardTextAsync();

Listing 4.8 Implementation of Clipboard

To better demonstrate the behavior, an entry field is provided in the clipboard page. Any text

in the entry field can be set to the clipboard with the button “Set”. Button “Get” can show the

text in the clipboard with a label. The performance of this feature on Android, iOS and UWP

are shown in order in Figure 4.11.

Figure 4.11 Performance of Clipboard on Android, iOS & UWP

Features and additional tasks

17

4.6 Color Converters

There are four different methods to create a new color in the “ColorConverters” class [32].

The color can be created with a hexadecimal string or with HSLA (hue, saturation, luminosity

and alpha) values or with a UInt value. The hexadecimal string consists of six numbers. Each

pair of the six numbers respectively refer to RGB (red, green and blue) values. The values can

be eight numbers as well. In this condition, the first pair of the eight numbers should be the

alpha value. To supplement the color converters, “ColorExtensions” class provide more

methods to control the color. For instance, it can create a new color based on the original color

with a new value of alpha, hue, saturation or luminosity [33]. The basic implementation of

these two classes is shown in Listing 4.9.

1. box.Color = ColorConverters.FromHex(entry_hex.Text);

2. box.Color = ColorConverters.FromUInt(uint.Parse(entry_uint.Text));

3. box.Color = ColorExtensions.WithHue(box.Color, (float)slider1.Value);

4. box.Color = ColorExtensions.WithSaturation(box.Color, (float)slider2.Value);

5. box.Color = ColorExtensions.WithLuminosity(box.Color, (float)slider3.Value);

6. box.Color = ColorExtensions.WithAlpha(box.Color, (int)slider4.Value);

7. entry_uint.Text = ColorExtensions.ToUInt(box.Color).ToString();

Listing 4.9 Implementation of Color Converters & Color Extensions

To better present this feature, a color box with four slider controllers is set in the page. New

colors can be created in the box by clicking the “Create” button with hexadecimal value or

UInt value in the entries. In addition, the four sliders can change the HSLA values of the color

in the box with the methods mentioned before. To give a direct view of UInt value, the value

in the second entry will change if the color in the color box changes. The performance of this

feature on Android, iOS and UWP are shown in order in Figure 4.12. This feature is also valid

on Windows IoT based on Raspberry Pi as shown in Figure 4.13.

Figure 4.12 Performance of Color Converters & Color Extensions on Android, iOS & UWP

Features and additional tasks

18

Figure 4.13 Performance of Color Converters & Color Extensions on Windows IoT

4.7 Compass

According to the official document of Android [14], there is no definition of API (application

programming interface) to get the heading of compass for Android. The value of heading

magnetic north is measured by exploiting accelerometer and magnetometer. Thus, compass is

a software-based sensor. There exists one property “IsMonitoring”, two “Start” methods, one

“Stop” method and one “ReadingChanged” Event in the “Compass” class [34]. The

distinction between two “Start” methods is whether to use a low-pass filter or not. However,

this low-pass filter is only suitable for Android devices because compasses on the other two

platforms can be accessed directly instead of with the calculation from accelerometer and

magnetometer. The speed of the sensor and the registration of “ReadingChanged” can be set

as described in Section 4.1. To better present the feature, a picture of north arrow rotates with

the angle of heading magnetic north. The implementation of the rotation logic of the picture is

shown in Listing 4.10. The 3rd line in Listing 4.10 is used to avoid event handler not to return

on UI thread as mentioned in Section 4.1.

1. void Compass_ReadingChanged(object sender, CompassChangedEventArgs e) {

2. //To avoid not able to return on UI thread

3. MainThread.BeginInvokeOnMainThread(() => {

4. label.Text = String.Format("{0,0:000} °", e.Reading.HeadingMagneticNorth);

5. image.Rotation = -e.Reading.HeadingMagneticNorth;

6. });

7. }

Listing 4.10 Implementation of Compass

The performance of this feature on Android, iOS and UWP are shown in order in Figure 4.14.

The button is used to start or stop the running of the feature. This feature throws a

“FeatureNotSupported” exception on Windows IoT based on Raspberry Pi.

Features and additional tasks

19

Figure 4.14 Performance of Compass on Android, iOS & UWP

4.8 Connectivity

Before implementing the feature, the permission to get access to the information on the

connectivity should be added manually [27]. This step is only required on the Android

platform. The code in Listing 4.11 should be added in the file “AssemblyInfo.cs” under the

“Properties” in the Android project. Another way to add the permission is to add code in

Listing 4.12 into the file “AndroidManifest.xml” under the “Properties”.

1. [assembly: UsesPermission(Android.Manifest.Permission.AccessNetworkState)]

Listing 4.11 Connectivity permission in C# [27]

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Listing 4.12 Connectivity permission in XML [27]

There exists two properties “ConnectionProfiles” and “NetworkAccess” and one event

“ConnectivityChanged” in the “Connectivity” class. In the former property, the fields contain

“Bluetooth”, “Cellular”, “Ethernet”, “Wifi” and “Unknown”. In the other property, the fields

contain “Internet”, “ConstrainedInternet”, “Local”, “None” and “Unknown”. The

implementation of this feature can be referred to the official document [27].

The performance of this feature on Android, iOS and UWP are shown in order in Figure 4.15.

The information will be shown after clicking the button. This feature is also valid on

Windows IoT based on Raspberry Pi, whose display of network access and connection profile

is the same as that on UWP.

Features and additional tasks

20

Figure 4.15 Performance of Connectivity on Android, iOS & UWP

4.9 Detect Shake

This feature utilizes the event “ShakeDetected” in the class “Accelerometer” to detect a shake

of the device. The shake is detected with a queue mechanism which examines if there exists

over 75 percent of recent events during the latest 0.5 seconds [15]. Furthermore, according to

the source code [5], a threshold of 169 is set to compare with the sum of the square of the

acceleration value on X, Y and Z axis. The speed of the sensor, the registration of

“ReadingChanged” and the basic implementation of the event can be completed as described

in Section 4.1.

Figure 4.16 Performance of Detect Shake on Android, iOS & UWP

In this content page, a button is used to control the sensor. An alert message will display if a

shake is detected after the sensor is started. The performance of this feature on Android, iOS

and UWP are shown in order in Figure 4.16. This feature gives no response instead of an error

message after clicking the button on Windows IoT base on Raspberry Pi.

Features and additional tasks

21

4.10 Device Display Information

There exist two properties “MainDisplayInfo” and “KeepScreenOn” and one event

“MainDisplayInfoChanged” in the class “DeviceDisplay” [35]. In the “MainDisplayInfo”,

there are properties “Orientation”, “Rotation”, “Width”, “Height” and “Density”. The

property “Orientation” has values of “Landscape”, “Portrait”, “Square”, and “Unknown”. The

property “Rotation” has values of 0, 90, 180 and 270. The “DisplayInfo” of the event can be

read only after “MainDisplayInfoChanged” is registered. “KeepScreenOn” can be set true to

keep the screen of the device from switching off [16]. The registration and implementation of

“MainDisplayInfoChanged” can be completed as described in Section 4.1. The basic

implementation of this class is shown in Listing 4.13. According to the official document [16],

it should be implemented on the UI thread on the iOS platform to avoid exceptions.

1. var mainDisplayInfo = DeviceDisplay.MainDisplayInfo;

2. var orientation = mainDisplayInfo.Orientation

3. var rotation = mainDisplayInfo.Rotation;

4. var width = mainDisplayInfo.Width; // Width (in pixels)

5. var height = mainDisplayInfo.Height; // Height (in pixels)

6. var density = mainDisplayInfo.Density; // Screen density

7. DeviceDisplay.KeepScreenOn = !DeviceDisplay.KeepScreenOn; // Keep Screen on or not

Listing 4.13 Implementation of Device Display Information [16]

Figure 4.17 Performance of Device Display Information on Android, iOS & UWP - 1

In this page, the first button is used to display information. The performance of clicking the

first button on Android, iOS and UWP are shown in order in Figure 4.17. The other button is

used to keep the screen from switching off. A hint is displayed to tell whether the screen will

be shut down afterward or not (Figure 4.18). The feature is supported on Windows IoT based

on Raspberry Pi.

Features and additional tasks

22

Figure 4.18 Performance of Device Display Information on Android, iOS & UWP - 2

4.11 Device Information

There exist eight properties in the “DeviceInfo” class, which are “DeviceType”, “Idiom”,

“Manufacturer”, “Model”, “Name”, “Platform”, “Version” and “VersionString” [36]. The

“Platform” property contains values of “iOS”, “Android”, “UWP” and “Unknown”. The

“Idiom” property contains values of “Phone”, “Tablet”, “Desktop”, “TV”, “Watch” and

“Unknown” according to various devices. The “DeviceType” property can be “Physical”,

“Virtual” or “Unknown”, which means if the application runs on a physical device or an

emulator. The basic implementation codes are shown in Listing 4.14.

1. var device = DeviceInfo.Model; // Device Model

2. var manufacturer = DeviceInfo.Manufacturer; // Manufacturer

3. var deviceName = DeviceInfo.Name; // Device Name

4. var version = DeviceInfo.VersionString; // Operating System Version Number

5. var platform = DeviceInfo.Platform; // Platform

6. var idiom = DeviceInfo.Idiom; // Idiom

7. var deviceType = DeviceInfo.DeviceType; // Device Type

Listing 4.14 Implementation of Device Information

A button is defined to display the information of the device in the demonstration page. The

performance of clicking the button on Android, iOS and UWP are shown in order in Figure

4.19.

Features and additional tasks

23

Figure 4.19 Performance of Device Information on Android, iOS & UWP

This feature is valid on Windows IoT based on Raspberry Pi as well. The performance is

shown in Figure 4.20.

Figure 4.20 Performance of Device Information on Windows IoT

4.12 Email

There is only one method “ComposeAsync” in the class “Email”. Nevertheless, it has three

different kinds of variables including “Null”, “EmailMessage” and “String, String, String[]”

[37]. All of them tries to open a default email application on the device. The only difference is

that the content of the email message can be edited only in the default email application when

the method with “Null” variable is used. The other two methods allow users to prepare their

email message within both this application and the default email application. The

implementation code of the feature is shown in Listing 4.15.

Features and additional tasks

24

1. public async Task SendEmail(string subject, string body, List<string> recipients) {

2. try {

3. var message = new EmailMessage {

4. Subject = subject,

5. Body = body,

6. To = recipients,

7. //Cc = ccRecipients,

8. //Bcc = bccRecipients

9. };

10. await Email.ComposeAsync(message);

11. } catch (FeatureNotSupportedException fnsEx) {

12. await DisplayAlert("Error", "Feature not supported on device.", "OK");

13. } catch (Exception ex) {

14. await DisplayAlert("Error", "Other error has occurred.", "OK");

15. }

16. }

Listing 4.15 Implementation of Email

Figure 4.21 Performance of Email on Android & iOS

The fields “Cc” and “Bcc” in the class “EmailMessage” are not implemented in this

demonstration application [28]. The performance of this feature on the Android and iOS

platform is shown in order in Figure 4.21. The default email application including the entered

text is opened after clicking the button.

Features and additional tasks

25

Figure 4.22 Performance of Email on UWP

The performance of the feature on the UWP platform is shown in Figure 4.22. Unfortunately,

this feature is not supported on Windows IoT based on Raspberry Pi (Figure 4.23).

Figure 4.23 Performance of Email on Windows IoT

4.13 File System Helpers

There exist two properties “AppDataDirectory” and “CacheDirectory” and one method

“OpenAppPackageFileAsync” in the class “FileSystem” [38]. These two properties only

provide a simpler way to get the directory of app data and cache data, and the method can

only open the files built in the app package. Therefore, this feature is not capable of creating

or managing files. In order to manage files, another class “System.IO.File” should be used

instead. On the Android platform, the method can open files added in the folder “Assets” with

the build action “AndroidAsset”. On the iOS platform, the method can open files added in the

folder “Resources” with the build action “BundledResource”. On the UWP platform, the

method can open files added in the root folder with the build action “Content”. [18].

Features and additional tasks

26

1. void OnButtonClicked1(object sender, EventArgs e) {

2. label.Text = FileSystem.CacheDirectory;

3. }

4. void OnButtonClicked2(object sender, EventArgs e) {

5. label.Text = FileSystem.AppDataDirectory;

6. }

7. void OnButtonClicked3(object sender, EventArgs e) {

8. try {

9. var mainDir = FileSystem.AppDataDirectory;

10. var fileName = Path.Combine(mainDir, entry_path.Text);

11. File.WriteAllText(fileName, entry_content.Text);

12. DisplayAlert("Success", "File created successfully.", "OK");

13. } catch (Exception) {

14. DisplayAlert("Error", "Error has occured.", "OK");

15. }

16. }

17. void OnButtonClicked4(object sender, EventArgs e) {

18. try {

19. var mainDir = FileSystem.AppDataDirectory;

20. var fileName = Path.Combine(mainDir, entry_path.Text);

21. label.Text = File.ReadAllText(fileName);

22. } catch (Exception) {

23. DisplayAlert("Error", "Error has occured.", "OK");

24. }

25. }

Listing 4.16 Implementation of File System Helpers

The implementation of this feature is combined with the utilization of “System.IO.File” to

better demonstrate it. The code is shown in Listing 4.16. The presentation page on the

Android and iOS platform is shown in Figure 4.24. The first two buttons are designed to show

the string of directory of app data or cache data of the current application. The create button

can create a file named in the first entry with the content entered in the second entry. This file

is created in the app data directory. By clicking the read button, the content of the file named

in the first entry which located in the app data directory can be shown on the screen. However,

it might be impossible to check the created file with a default file manager of an Android

device because it might be hidden unless the device is rooted. The performance of the feature

on UWP is shown in Figure 4.25.

Features and additional tasks

27

Figure 4.24 Performance of File System Helpers on Android & iOS

Figure 4.25 Performance of File System Helpers on UWP

This feature is also valid on Windows IoT based on Raspberry Pi as shown in Figure 4.26.

Figure 4.26 Performance of File System Helpers on Windows IoT

Features and additional tasks

28

4.14 Flashlight

Before implementing the feature, the permission to get access to the camera and the flashlight

should be added manually for the Android platform [12]. The code in Listing 4.17 should be

added in the file “AssemblyInfo.cs” under the “Properties” in the Android project.

1. [assembly: UsesPermission(Android.Manifest.Permission.Flashlight)]

2. [assembly: UsesPermission(Android.Manifest.Permission.Camera)]

Listing 4.17 Camera & flashlight permission in C# [12]

Another way to add permission is to add the code in Listing 4.18 into the file

“AndroidManifest.xml” under the “Properties”.

1. <uses-permission android:name="android.permission.FLASHLIGHT" />

2. <uses-permission android:name="android.permission.CAMERA" />

Listing 4.18 Camera & flashlight permission in XML [12]

There are two methods “TurnOnAsync” and “TurnOffAsync” in the class “Flashlight”. These

two methods reduce codes need to be implemented on each platform. In addition, the feature

does not contain any methods to control the luminosity of the flashlight.

1. await Flashlight.TurnOnAsync();

2. await Flashlight.TurnOffAsync();

Listing 4.19 Implementation of Flashlight [12]

Figure 4.27 Performance of Flashlight on Android, iOS & UWP

Features and additional tasks

29

The performance of this feature on Android, iOS & UWP is shown in order in Figure 4.27.

Unfortunately, the author does not have a UWP device which supports the feature.

Additionally, the feature is not supported on Windows IoT based on Raspberry Pi either. It

throws the same exception as that on UWP.

4.15 Geocoding

Geocoding is a procedure to translate a literal address into numerical coordinates on the earth.

This coordinate can be used as a placemark on a map application. The procedure can also be

reversed, which is called reverse geocoding. There are two methods “GetLocationAsync” and

“GetPlacemarkAsync” in the class “Geocoding” [40]. The implementation of the method

“GetLocationAsync” is shown in Listing 4.20.

1. var address = entry.Text.ToString();

2. var locations = await Geocoding.GetLocationsAsync(address);

3. var location = locations?.FirstOrDefault();

4. if (location != null) {

5. label.Text = "Latitude: " + location.Latitude + "\nLongitude: "

6. + location.Longitude + "\nAltitude: " + location.Altitude;

7. }

Listing 4.20 Implementation of geocoding

The method “GetPlacemarkAsync” has two kinds of variables which are one “Location” value

or two double values. Since an object with the type of “Location” can be constructed with two

double values, these two methods are virtually the same. The implementation of the method

“GetPlacemarkAsync” is shown in Listing 4.21.

1. var lat = Convert.ToDouble(entry_lat.Text);

2. var lon = Convert.ToDouble(entry_lon.Text);

3. var placemarks = await Geocoding.GetPlacemarksAsync(lat, lon);

4. var placemark = placemarks?.FirstOrDefault();

5. if (placemark != null) {

6. var geocodeAddress =

7. $"AdminArea: {placemark.AdminArea}\n" +

8. $"CountryCode: {placemark.CountryCode}\n" +

9. $"CountryName: {placemark.CountryName}\n" +

10. $"FeatureName: {placemark.FeatureName}\n" +

11. $"Locality: {placemark.Locality}\n" +

12. $"PostalCode: {placemark.PostalCode}\n" +

13. $"SubAdminArea: {placemark.SubAdminArea}\n" +

14. $"SubLocality: {placemark.SubLocality}\n" +

15. $"SubThoroughfare: {placemark.SubThoroughfare}\n" +

16. $"Thoroughfare: {placemark.Thoroughfare}\n";

17. label.Text = geocodeAddress;

18. }

Listing 4.21 Implementation of reverse geocoding [21]

Features and additional tasks

30

The examples of the demonstration on Android and iOS are shown in order in Figure 4.28. It

is necessary to connect the device to the network. Since this feature does not provide an

offline database, the procedure of geocoding or reverse geocoding is processed online. The

two buttons used the two functions of this feature respectively. The text in the first entry in the

presentation of the Android platform is the Chinese characters of “Pudong International

Airport”. The altitude might be unavailable according to different devices [21]. After entering

the results of the geographic location, reverse geocoding is done by clicking the second button.

The result on the screen of the Android platform can prove that the conclusion of geocoding is

true.

Figure 4.28 Performance of Geocoding on Android & iOS

The performance of the feature on UWP is not available because of the lack of authentication

from the API of Bing Maps. The author did not find a way to get the authentication through

the code in the official document [21]. This feature is not valid on Windows IoT as well.

4.16 Geolocation

Before implementing the feature, the permission to get access to the information on the

location should be added manually to different platforms [29]. The code in Listing 4.22

should be added in the file “AssemblyInfo.cs” under the “Properties” in the Android project.

1. [assembly: UsesPermission(Android.Manifest.Permission.AccessCoarseLocation)]

2. [assembly: UsesPermission(Android.Manifest.Permission.AccessFineLocation)]

3. [assembly: UsesFeature("android.hardware.location", Required = false)]

4. [assembly: UsesFeature("android.hardware.location.gps", Required = false)]

5. [assembly: UsesFeature("android.hardware.location.network", Required = false)]

Listing 4.22 Geolocation permission on Android in C# [29]

Features and additional tasks

31

Another way to add the permission is to add the code in Listing 4.23 into the file

“AndroidManifest.xml” under the “Properties” in the Android project.

1. <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

2. <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

3. <uses-feature android:name="android.hardware.location" android:required="false" />

4. <uses-feature android:name="android.hardware.location.gps" android:required="false" />

5. <uses-feature android:name="android.hardware.location.network" android:required="false" />

Listing 4.23 Geolocation permission on Android in XML [29]

For the iOS platform, the code in Listing 4.24 should be added to the file “Info.plist” in the

iOS project.

1. <key>NSLocationWhenInUseUsageDescription</key>

2. <string>This app needs location access when open.</string>

Listing 4.24 Geolocation permission on iOS [29]

For the UWP platform, the checkbox of “Location” should be clicked under the tag

“Capabilities” in the file “Package.appxmanifest” in the UWP project as shown in Figure

4.29.

Figure 4.29 Geolocation permission on UWP

There are two methods “GetLastKnownLocation” and “GetLocationAsync” in the class

“Geolocation” [41]. The first method returns the last known location of the device. The

second method has three different types of input values which are “Null”,

“GeolocationRequest” and “GeolocationRequest, CancellationToken”. The variable

“GeolocationRequest” can be defined by “GeolocationAccuracy” which has five categories of

accuracy. They are “Lowest”, “Low”, “Medium”, “High” and “Best”. More detailed statistics

can be referred from the official document [29]. The variable “CancellationToken” can be set

as a time period so that the request can be terminated after waiting for a long time without

response. The detailed implementation of the two methods is shown in Listing 4.25 and

Listing 4.26.

Features and additional tasks

32

1. var location = await Geolocation.GetLastKnownLocationAsync();

2. if (location != null) {

3. label.Text = $"Latitude: {location.Latitude}\n" +

4. $"Longitude: {location.Longitude}\n" +

5. $"Altitude: {location.Altitude}";

6. }

Listing 4.25 Implementation of Geolocation – 1 [29]

1. var request = new GeolocationRequest(GeolocationAccuracy.Me-

dium, TimeSpan.FromSeconds(10));

2. var location = await Geolocation.GetLocationAsync(request);

3. if (location != null) {

4. label.Text = $"Latitude: {location.Latitude}\n" +

5. $"Longitude: {location.Longitude}\n" +

6. $"Altitude: {location.Altitude}";

7. }

Listing 4.26 Implementation of Geolocation – 2 [29]

As the example presentation of Android, iOS and UWP shown in Figure 4.30, the current

location will show after clicking the second button. The accuracy can be proved by entering

the latitude and longitude in the geocoding page mentioned in Section 4.15. This feature is not

available on Windows IoT based on Raspberry Pi.

Figure 4.30 Performance of Geolocation on Android, iOS & UWP

4.17 Gyroscope

Gyroscope is a motion sensor which measures the rotation speed in radian per second around

x, y and z-axis. The coordinate is equivalent to that mentioned in the accelerometer class in

Features and additional tasks

33

Section 4.1. There exists one property “IsMonitoring”, two methods “Start” and “Stop” and

one event “ReadingChanged” in the class “Gyroscope” [42]. The implementation of the two

methods is similar to that in Listing 4.3. To eliminate noise, an average low-pass filter is used,

which is mentioned in Section 4.1. The values of rotation speed are positive in the

counter-clockwise direction. The speed of the sensor, the registration of “ReadingChanged”

and the implementation of the two methods are similar to those of the accelerometer in

Section 4.1, which is omitted here.

1. using Entry = Microcharts.Entry;

2. using Microcharts;

3. using Microcharts.Forms;

4. double scaling = Math.Pow(10, slider.value);

5. slider = new Slider {

6. Maximum = 2,

7. Minimum = -2

8. }

9. ChartView chartView = new ChartView();

10. var entries = new[] {

11. new Entry((float)Math.Abs(Math.Round(data_X * scaling, 2))) {

12. Label = "X",

13. ValueLabel = Math.Round(data_X, 2).ToString(),

14. Color = SKColor.Parse("#2c3e50")

15. },

16. new Entry((float)Math.Abs(Math.Round(data_Y * scaling, 2))) {

17. Label = "Y",

18. ValueLabel = Math.Round(data_Y, 2).ToString(),

19. Color = SKColor.Parse("#77d065")

20. },

21. new Entry((float)Math.Abs(Math.Round(data_Z * scaling, 2))) {

22. Label = "Z",

23. ValueLabel = Math.Round(data_Z, 2).ToString(),

24. Color = SKColor.Parse("#b455b6")

25. }

26. };

27. chartView.Chart = new RadarChart() {

28. Entries = entries,

29. PointSize = 10,

30. MaxValue = 30,

31. MinValue = 0

32. };

Listing 4.27 Implementation of Mirocharts

Features and additional tasks

34

To improve the demonstration, instead of three single numbers shown on the screen,

Microcharts is used. It is a NuGet package that is available for the cross-platform application.

There are different types of charts in this package. In this case, the radar chart is used.

Although it can only display absolute values, the demonstration of radar on three axes can

probably improve the imagination of users on the three-dimensional coordinate. The detail

implementation of Microcharts is shown in Listing 4.27. The code in the first three lines of

Listing 4.27 should be added at the beginning of the file. From the 5th to 9th line should be

contained in the constructor of the content page. Rest of the code defines the entries and the

style of the chart.

The variable “scaling” is used to adjust the size of the diagram in the radar chart. One of the

reasons to use this variable is that the sensors in different devices can probably return

disparate magnitude of values. For instance, when rotating a tablet, the value is usually around

thirty, while it is only around 3 on a phone. Since the maximum of the chart is fixed, a

coefficient is needed to adjust the values. As shown in Listing 4.27, an exponential method is

used. With this method, a small range of the slider from -2 to +2 can lead to a huge range of

coefficient from 0.01 to 100. It is much better than a simple linear coefficient slider for users

to control.

Figure 4.31 Performance of Gyroscope on Android, iOS & UWP

The performance of this feature on Android, iOS and UWP is shown in order in Figure 4.31.

This feature is not available on Windows IoT based on Raspberry Pi without throwing an

exception.

4.18 Launcher

The class “Launcher” can open a URI (uniform resource identifier) by the application. A

uniform resource identifier determines an explicit resource with uniform syntax rules.

According to RFC (Request for Comments) 2396, the rules which are called URI generic

Features and additional tasks

35

syntax has the format as “scheme:[//authority]path[?query][#fragment]” to define all the URIs.

Each part of the format has its specific meaning. They can be referred to RFC 3986, which is

the ultimate version of the specification of URI.

There exist two methods “CanOpenAsync” and “OpenAsync” in the class “Launcher” [43].

Both of them can be executed with input values of type “String” or “Uri”. The former one

returns a task with type “boolean” to check if the URI scheme is supported on the current

device. The other method just opens a URI to launch the specific application. Some examples

are provided here. “smsto:” can open the default SMS application of the device. “tel:” can

launch the default telephone application of the device. “http://[website]” can open the default

browser of the device. On the Android platform, “content://contacts/people” can launch the

default contact application of the device while “market://search” can launch the default app

market of the device. The detail implement codes are shown in Listing 4.28.

1. try {

2. Uri uri = new Uri(text.Text);

3. //var supportsUri = await Launcher.CanOpenAsync(uri);

4. await Launcher.OpenAsync(uri);

5. } catch (UriFormatException) {

6. await DisplayAlert("Alert", "The entered uri is not supported.", "OK");

7. } catch (Exception) {

8. await DisplayAlert("Alert", "Error has occured.", "OK");

9. }

Listing 4.28 Implementation of Launcher

The performance of the launcher on Android and iOS is shown in order in Figure 4.32. On the

Android platform, the default telephone application will be launched after clicking the button

“Launch”. Meanwhile, a message is prompted to let users call with the number.

Figure 4.32 Performance of Launcher on Android & iOS

Features and additional tasks

36

The performance of the feature on UWP is shown in Figure 4.33. A selection message is

given that users can select a suitable application to execute the URI. This feature gives no

response after clicking the button on Windows IoT based on Raspberry Pi.

Figure 4.33 Performance of Launcher on UWP

4.19 Additional Task

Although Xamarin.Essentials has lots of features for developers to utilize, there does not exist

a feature to access the library or the camera of the device. This section will demonstrate how

to implement this on Android, iOS and UWP.

4.19.1 Image Picker

Firstly, an interface containing a method with a return type of “Task<Stream>” should be

created in the shared project. This method is used to get the stream of the image and should be

implemented in Android, iOS and UWP platforms respectively. To realize this, a vital class

“DependencyService” is needed, which enables the application to call the respective functions

related to the interface implemented on each platform from the shared code [11]. The simpler

explanation is shown as in Figure 4.34.

Figure 4.34 Structure of DependencyService [11]

Features and additional tasks

37

The detailed implementation on each platform can be referred to the official document [8]. On

the iOS platform, the permission should be granted by developers. To realize this, the code in

Listing 4.29 should be added to the node “dict” of the file “Info.plist” in the iOS project.

1. <key>NSPhotoLibraryUsageDescription</key>

2. <string>Image Picker uses photo library</string>

Listing 4.29 Permission of Image Picker on iOS

On the other hand, additional field, property and method related to activity should be added in

the class “MainActivity” in the Android project. The implementation is shown in Listing 4.30.

1. // Field, property, and method for Picture Picker

2. public static readonly int PickImageId = 1000;

3. public TaskCompletionSource<Stream> PickImageTaskCompletion-

Source { set; get; }

4. protected override void OnActivityResult(int requestCode, Result re-

sultCode, Intent intent) {

5. base.OnActivityResult(requestCode, resultCode, intent);

6. if (requestCode == PickImageId) {

7. if ((resultCode == Result.Ok) && (intent != null)) {

8. Android.Net.Uri uri = intent.Data;

9. Stream stream = ContentResolver.OpenInputStream(uri);

10. // Set the Stream as the completion of the Task

11. PickImageTaskCompletionSource.SetResult(stream);

12. } else {

13. PickImageTaskCompletionSource.SetResult(null);

14. }

15. }

16. }

Listing 4.30 Implementation of MainActivity on Android [8]

The final step is to implement the shared code in the content page of the image picker. The

implementation is contained in the click action of the button “Pick”. To show the image, a

new instance of the image should be created with the returned stream, and the content of the

demonstration page should be recreated [8].

The performance this image picker on Android, iOS and UWP are shown in order in Figure

4.35. The photo library is shown after clicking the first button. After picking a photo, the

photo is presented in the application. It can be removed by tapping on it. The function of the

second button is described in Section 4.19.2. Image picker is not available on Windows IoT

based on Raspberry Pi.

Features and additional tasks

38

Figure 4.35 Performance of Image Picker on Android, iOS & UWP

4.19.2 Photo from Camera

To pick the photo captured by the camera of the device, a NuGet package called

“Xam.Plugin.Media” can be used to simplify the implementation. The package should be

installed on all projects. The installation of the package is similar to that of

“Xamarin.Essentials” in Section 4.

Before the implementation, several setup preparations should be done on Android, iOS and

UWP [6]. On the Android platform, the permission plugin code in Listing 4.31 should be

added to the class “MainActivity”. Since this NuGet Package is based on “Current Activity

Plugin”, a NuGet package called “Plugin.CurrentActivity” should be installed only on the

Android project. After the installation, there exist two methods for initialization [4]. In this

thesis, the first one is recommended because it is unnecessary to create a new class to increase

the load of the application. Therefore, one single line of Listing 4.32 should be added to the

method “OnCreate” in the class “MainActivity”.

1. public override void OnRequestPermissionsResult(int requestCode, string[] permis-

sions, Android.Content.PM.Permission[] grantResults) {

2. Plugin.Permissions.PermissionsImplementation.Current.OnRequestPermis-

sionsResult(requestCode, permissions, grantResults);

3. }

Listing 4.31 Permission plugin code [6]

1. CrossCurrentActivity.Current.Init(this, bundle);

Listing 4.32 Initialization of CurrentActivity [6]

Features and additional tasks

39

To totally guarantee the camera permission on Android, the code in Listing 4.33 should be

added to the file “AssemblyInfo.cs”. After that, some configuration code in

Listing 4.34 related to Android file provider should be added to the node “application” in the

file “AndroidManifest.xml”. Furthermore, a new folder “xml” with build action

“AndroidResource” including a file “file_paths.xml” should be created under the folder

“Resources” in the Android project. The file should include the code in Listing 4.35 [6].

1. [assembly: UsesFeature("android.hardware.camera", Required = false)]

2. [assembly: UsesFeature("android.hardware.camera.autofocus", Required = false)]

Listing 4.33 Permission of camera on Android [6]

1. <provider android:name="android.support.v4.content.FileProvider"

2. android:authorities="${applicationId}.fileprovider"

3. android:exported="false"

4. android:grantUriPermissions="true">

5. <meta-data android:name="android.support.FILE_PROVIDER_PATHS"

6. android:resource="@xml/file_paths"></meta-data>

7. </provider>

Listing 4.34 Configuration code for Android file provider – 1 [6]

1. <?xml version="1.0" encoding="utf-8"?>

2. <paths xmlns:android="http://schemas.android.com/apk/res/android">

3. <external-files-path name="my_images" path="Pictures" />

4. <external-files-path name="my_movies" path="Movies" />

5. </paths>

Listing 4.35 Configuration code for Android file provider – 2 [6]

The process of permission on the iOS platform is simpler. The code in Listing 4.36 should be

added to the file “Info.plist” in the iOS project [6].

1. <key>NSCameraUsageDescription</key>

2. <string>This app needs access to the camera to take photos.</string>

3. <key>NSPhotoLibraryUsageDescription</key>

4. <string>This app needs access to photos.</string>

5. <key>NSPhotoLibraryAddUsageDescription</key>

6. <string>This app needs access to the photo gallery.</string>

Listing 4.36 Permission of camera on iOS [6]

Features and additional tasks

40

The process of permission on the UWP platform is the simplest. The checkbox of “Webcam”

should be clicked under the tag “Capabilities” in the file “Package.appxmanifest” in the UWP

project as shown in Figure 4.36 [6].

Figure 4.36 Permission of camera on UWP

The detailed implementation of picking a photo from the camera is shown in Listing 4.37 and

Listing 4.38. Since the permission requirement on each platform is completely different, a

permission check is recommended before every access to the camera [6]. The code in Listing

4.37 show the permission check process. The code in Listing 4.38 implement the function and

recreate the content page.

1. // Check permission before every access

2. if (!CrossMedia.Current.IsCameraAvailable || !CrossMedia.Current.IsTakePho-

toSupported) {

3. await DisplayAlert("No Camera", ":(No camera avaialble.", "OK");

4. return;

5. }

6. var cameraStatus = await CrossPermissions.Current.CheckPermissionSta-

tusAsync(Permission.Camera);

7. var storageStatus = await CrossPermissions.Current.CheckPermissionSta-

tusAsync(Permission.Storage);

8.

9. if (cameraStatus != PermissionStatus.Granted || storageStatus != Permission-

Status.Granted) {

10. var results = await CrossPermissions.Current.RequestPermis-

sionsAsync(new[] { Permission.Camera, Permission.Storage });

11. cameraStatus = results[Permission.Camera];

12. storageStatus = results[Permission.Storage];

13. }

14. if (cameraStatus == PermissionStatus.Granted && storageStatus == Permission-

Status.Granted) {

Listing 4.37 Implementation of picking a photo from the camera - 1 [6]

Features and additional tasks

41

1. // Codes to get access to camera and take photos

2. var file = await CrossMedia.Current.TakePhotoAsync(new Plugin.Media.Abstractions.S

toreCameraMediaOptions {

3. PhotoSize = Plugin.Media.Abstractions.PhotoSize.Medium,

4. Directory = "Sample",

5. Name = "test.jpg"

6. });

7. if (file == null)

8. return;

9. // create image with the photo just took and stored

10. image = new Image {

11. Source = ImageSource.FromStream(() => {

12. var stream = file.GetStream();

13. file.Dispose();

14. return stream;

15. }),

16. BackgroundColor = Color.Gray,

17. VerticalOptions = LayoutOptions.Center,

18. HorizontalOptions = LayoutOptions.Center

19. };

20. // Recreate the content page

21. scrollView = new StackLayout { Children = { image } };

22. }

23. else {

24. await DisplayAlert("Permissions Denied", "Unable to take photos.", "OK");

25. }

Listing 4.38 Implementation of picking a photo from the camera - 2 [6]

The performance of this task in the application is the same as the image picker as shown in

Figure 4.35. The default camera application of the device will be launched after clicking the

button “Take”. The taken photo will be shown on the screen afterward.

4.19.3 Other Implementation

The Icon of the demonstration application is designed by the author. It utilizes the first letter

of the word “Essentials” as shown in Figure 4.37. To adapt the icon to the application, the

default icons in the Android, iOS and UWP project should be replaced manually. The storage

places of these icons are slightly different. In the Android project, it is the folder “Resouces”,

while it is the folder “Assets.xcassets” in the iOS project, and it is the folder “Assets” in the

UWP project. It is necessary to resize the designed icon to make it available to these projects.

In this thesis, a resize application is used, which is designed by Jörg Bayerlein. It can generate

Features and additional tasks

42

all the needed sizes of an icon automatically [49]. The detailed replacement rule can be

referred to the document written by Jörg Bayerlein [48].

Figure 4.37 Icon of the application

In addition, a version number is added in the feature list as shown in Figure 4.1. It is

implemented by using the build time of the application (Listing 4.39). However, the actual

version of the application is not changed at the same time. The author does not find the

approach to synchronize the versions on different platforms and to automatically increase

them, which is a limitation of this application.

1. System.IO.File.GetLastWriteTime(System.Reflection.Assembly.GetExecutingAssem

bly().Location).ToString("yy.MM.dd.HH.mm.ss");

Listing 4.39 Get the build time of the project

The introduction of each feature is described in each presentation page as shown in the figures

in Section 4. It can help users and other developers to have a better understanding of the

feature.

4.19.4 Problems of the other half of the features on Android

Firstly, the preferences are removed when the application is uninstalled unless “Auto Backup”

is used. This feature is enabled by default on Android 6.0 or later versions. Additionally, the

performance of the feature “Preferences” will be poor if large amount of text is stored. This

phenomenon appears in the feature “Secure Storage” as well.

Conclusion and outlook

43

5 Conclusion and outlook

The purpose of this study is to investigate the possibilities and limitations of

Xamarin.Essentials on Android phone. In this paper, a mobile application is developed to

demonstrate the features in Xamarin.Essentials. Performance of half of the features on

different platforms is evaluated.

The performance has shown that virtually all the features are capable of executing the shared

code on Android, iOS and UWP. Nevertheless, some of the features considering the

utilization of sensors might not be supported as a result of lacking a specific sensor on the

device. For instance, the tablet “Samsung SM-T585” does not contain most of the sensors and

cannot support those features as a result. The application has a slight difference in the

demonstration due to the style of the platform. Moreover, the information provided by the

features can be processed in a more understandable way with the help of Xamarin.Forms.

Additionally, there exist other NuGet packages, such as “Microcharts”, to make a good

presentation of the features.

Xamarin.Essentials gives the possibility to get access to sensors, information and default

applications of the device based on different platforms with least implementation of the code.

It reduces the workload of developers to develop cross-platform applications.

On the other hand, there still exists some limitations of Xamarin.Essentials. Firstly, some

features do not provide complete functions. For instance, it is impossible to change the

luminosity of the flashlight with the feature “Flashlight”. There does not exist any method to

create files in the feature “File System Helpers”. Secondly, although it reduces the workload

of developers, it increases the load of the application to some extent. If only one feature of

Xamarin.Essentials is used during cross-platform development, it is unnecessary to use such a

large package. Instead, developers can make the implementation with their own code. At last

but not least, Xamarin.Essentials lacks some useful functions, such as image picker, which is

the additional task of this study. It requires great effort to implement such a function on

different platforms as shown in Section 4.19.1. The implementation would be simpler if it is

contained in Xamarin.Essentials.

For further research on Xamarin.Essentials, several factors can be further investigated. Firstly,

some meaningful cross-platform mobile applications can be developed with the use of

Xamarin.Essentials. For instance, an application with the utilization of the accelerometer can

be developed to measure the force of a punch of one person. Secondly, as mentioned in the

limitations, more useful functions should be developed and be accumulated in

Xamarin.Essentials. Finally, the approach to increase the version number automatically in the

cross-platform projects should be investigated.

Acknowledgments

44

Acknowledgments

First and foremost, I want to appreciate my supervisor Prof. Bayerlein for providing me the

thesis topic and all the related facilities, devices and vital instructions. With the help of these,

I can finish my thesis successfully.

Secondly, I would like to present my gratitude to Mrs. Kleinau who gives me information on

thesis writing. Her efforts of teaching me during my study in THL also laid foundations for

my basic knowledge on implementation of applications.

Thirdly, I want to express my thankfulness to my friend Yuxuan Wang who gives me support

on the iOS platform.

Last but not least, I would like to give the acknowledgment to my families, classmates and

anyone who gave me a hand during my study, which helps me to overcome all the difficulties

and keep progressing.

Bibliography

45

Bibliography

[1] Furlan, A., 2018. Cross Platform Mobile App Development Guide (2017). [Online]

Available at: http://www.businessofapps.com/guide/cross-platform-mobile-app-develop

ment/ [Accessed 30 April 2019].

[2] Google Developers, n.d. Motion sensors. [Online] Available at: https://developer.and

roid.com/guide/topics/sensors/sensors_motion [Accessed 2 May 2019].

[3] Google Developers, n.d. Sensors Overview. [Online] Available at: https://developer.

android.com/guide/topics/sensors/sensors_overview.html [Accessed 2 May 2019].

[4] jamesmontemagno, 2018. CurrentActivityPlugin. [Online] Available at: https://github.

com/jamesmontemagno/CurrentActivityPlugin/blob/master/README.md [Accessed 4

May 2019].

[5] jamesmontemagno, 2019. Accelerometer.shared.cs. [Online] Available at: https://gith

ub.com/xamarin/Essentials/blob/master/Xamarin.Essentials/Accelerometer/Acceleromete

r.shared.cs [Accessed 4 May 2019].

[6] jamesmontemagno, n.d. MediaPlugin. [Online] Available at: https://github.com/james

montemagno/MediaPlugin [Accessed 4 May 2019].

[7] Microsoft, 2015. Introduction to the C# Language and the .NET Framework.

[Online] Available at: https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/int

roduction-to-the-csharp-language-and-the-net-framework [Accessed 1 May 2019].

[8] Microsoft, 2017. Picking a Photo from the Picture Library. [Online] Available at:

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-

service/photo-picker [Accessed 4 May 2019].

[9] Microsoft, 2017. Xamarin.Forms Master-Detail Page. [Online] Available at: https://

docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/navigation/master-d

etail-page [Accessed 4 May 2019].

[10] Microsoft, 2018. Get Started with Xamarin.Essentials. [Online] Available at: https:/

/docs.microsoft.com/en-us/xamarin/essentials/get-started?context=xamarin%2Fandroid&t

abs=windows%2Candroid [Accessed 2 May 2019].

[11] Microsoft, 2018. Introduction to DependencyService. [Online] Available at: https://d

ocs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/i

ntroduction [Accessed 4 May 2019].

Bibliography

46

[12] Microsoft, 2018. Xamarin.Essentials. [Online] Available at: https://docs.microsoft.co

m/en-us/xamarin/essentials/flashlight?context=xamarin%2Fandroid&tabs=android

[Accessed 4 May 2019].

[13] Microsoft, 2018. Xamarin.Essentials: Barometer. [Online] Available at: https://docs.

microsoft.com/en-us/xamarin/essentials/barometer?context=xamarin%2Fandroid&tabs=a

ndroid [Accessed 4 May 2019].

[14] Microsoft, 2018. Xamarin.Essentials: Compass. [Online] Available at: https://docs.m

icrosoft.com/en-us/xamarin/essentials/compass?context=xamarin%2Fandroid&tabs=andr

oid [Accessed 3 May 2019].

[15] Microsoft, 2018. Xamarin.Essentials: Detect Shake. [Online] Available at: https://do

cs.microsoft.com/en-us/xamarin/essentials/detect-shake?context=xamarin/android

[Accessed 4 May 2019].

[16] Microsoft, 2018. Xamarin.Essentials: Device Display Information. [Online]

Available at: https://docs.microsoft.com/en-us/xamarin/essentials/device-display?contex

t=xamarin%2Fandroid&tabs=android [Accessed 4 May 2019]

[17] Microsoft, 2018. Xamarin.Essentials: Device Information. [Online] Available at: htt

ps://docs.microsoft.com/en-us/xamarin/essentials/device-information?context=xamarin%

2Fandroid&tabs=ios [Accessed 4 May 2019].

[18] Microsoft, 2018. Xamarin.Essentials: File System Helpers. [Online] Available at: ht

tps://docs.microsoft.com/en-us/xamarin/essentials/file-system-helpers?context=xamarin%

2Fandroid&tabs=android [Accessed 4 May 2019].

[19] Microsoft, 2018. Xamarin.Essentials: Gyroscope. [Online] Available at: https://docs.

microsoft.com/en-us/xamarin/essentials/gyroscope?context=xamarin/android

[Accessed 4 May 2019].

[20] Microsoft, 2018. Xamarin.Essentials: Launcher. [Online] Available at: https://docs.m

icrosoft.com/en-us/xamarin/essentials/launcher?context=xamarin%2Fandroid&tabs=andr

oid [Accessed 4 May 2019].

[21] Microsoft, 2018. Xamarin.Essentials:Geocoding. [Online] Available at: https://docs.

microsoft.com/en-us/xamarin/essentials/geocoding?context=xamarin%2Fandroid&tabs=a

ndroid [Accessed 4 May 2019].

[22] Microsoft, 2019. Welcome to the Visual Studio IDE. [Online] Available at: https://

docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide?view=vs-2017

[Accessed 1 May 2019].

Bibliography

47

[23] Microsoft, 2019. Xamarin.Essentials. [Online] Available at: https://docs.microsoft.co

m/en-us/xamarin/essentials/ [Accessed 30 April 2019].

[24] Microsoft, 2019. Xamarin.Essentials: Accelerometer. [Online] Available at: https://d

ocs.microsoft.com/en-us/xamarin/essentials/accelerometer?context=xamarin/android

[Accessed 4 May 2019].

[25] Microsoft, 2019. Xamarin.Essentials: App Information. [Online] Available at: https:/

/docs.microsoft.com/en-us/xamarin/essentials/app-information?context=xamarin%2Fandr

oid&tabs=android [Accessed 3 May 2019].

[26] Microsoft, 2019. Xamarin.Essentials: Battery. [Online] Available at: https://docs.mic

rosoft.com/en-us/xamarin/essentials/battery?context=xamarin%2Fandroid&tabs=android

[Accessed 4 May 2019].

[27] Microsoft, 2019. Xamarin.Essentials: Connectivity. [Online] Available at: https://doc

s.microsoft.com/en-us/xamarin/essentials/connectivity?context=xamarin%2Fandroid&tab

s=ios [Accessed 4 May 2019].

[28] Microsoft, 2019. Xamarin.Essentials: Email. [Online] Available at: https://docs.micr

osoft.com/en-us/xamarin/essentials/email?context=xamarin%2Fandroid&tabs=android

[Accessed 4 May 2019].

[29] Microsoft, 2019. Xamarin.Essentials: Geolocation. [Online] Available at: https://doc

s.microsoft.com/en-us/xamarin/essentials/geolocation?context=xamarin%2Fandroid&tabs

=android [Accessed 4 May 2019].

[30] Microsoft, n.d. BatteryState Enum. [Online] Available at: https://docs.microsoft.com/

en-us/dotnet/api/xamarin.essentials.batterystate?view=xamarin-essentials

[Accessed 3 May 2019].

[31] Microsoft, n.d. Clipboard Class. [Online] Available at: https://docs.microsoft.com/en

-us/dotnet/api/xamarin.essentials.clipboard?view=xamarin-essentials

[Accessed 4 May 2019].

[32] Microsoft, n.d. ColorConverters Class. [Online] Available at: https://docs.microsoft.

com/en-us/dotnet/api/xamarin.essentials.colorconverters?view=xamarin-essentials

[Accessed 3 May 2019].

[33] Microsoft, n.d. ColorExtensions Class. [Online] Available at: https://docs.microsoft.c

om/en-us/dotnet/api/xamarin.essentials.colorextensions?view=xamarin-essentials

[Accessed 3 May 2019].

Bibliography

48

[34] Microsoft, n.d. Compass Class. [Online] Available at: https://docs.microsoft.com/en-

us/dotnet/api/xamarin.essentials.compass?view=xamarin-essentials

[Accessed 4 May 2019].

[35] Microsoft, n.d. DeviceDisplay Class. [Online] Available at: https://docs.microsoft.co

m/en-us/dotnet/api/xamarin.essentials.devicedisplay?view=xamarin-essentials

[Accessed 4 May 2019].

[36] Microsoft, n.d. DeviceInfo Class. [Online] Available at: https://docs.microsoft.com/e

n-us/dotnet/api/xamarin.essentials.deviceinfo?view=xamarin-essentials

[Accessed 4 May 2019].

[37] Microsoft, n.d. Email Class. [Online] Available at: https://docs.microsoft.com/en-us/

dotnet/api/xamarin.essentials.email?view=xamarin-essentials [Accessed 4 May 2019].

[38] Microsoft, n.d. FileSystem Class. [Online] Available at: https://docs.microsoft.com/e

n-us/dotnet/api/xamarin.essentials.filesystem?view=xamarin-essentials

[Accessed 4 May 2019].

[39] Microsoft, n.d. Flashlight Class. [Online] Available at: https://docs.microsoft.com/en

-us/dotnet/api/xamarin.essentials.flashlight?view=xamarin-essentials

[Accessed 4 May 2019].

[40] Microsoft, n.d. Geocoding Class. [Online] Available at: https://docs.microsoft.com/e

n-us/dotnet/api/xamarin.essentials.geocoding?view=xamarin-essentials

[Accessed 4 May 2019].

[41] Microsoft, n.d. Geolocation Class. [Online] Available at: https://docs.microsoft.com/

en-us/dotnet/api/xamarin.essentials.geolocation?view=xamarin-essentials

[Accessed 4 May 2019].

[42] Microsoft, n.d. Gyroscope Class. [Online] Available at: https://docs.microsoft.com/e

n-us/dotnet/api/xamarin.essentials.gyroscope?view=xamarin-essentials

[Accessed 4 May 2019].

[43] Microsoft, n.d. Launcher Class. [Online] Available at: https://docs.microsoft.com/en-

us/dotnet/api/xamarin.essentials.launcher?view=xamarin-essentials

[Accessed 4 May 2019].

[44] Microsoft, n.d. Visual Studio. [Online] Available at: https://visualstudio.microsoft.co

m/ [Accessed 1 May 2019].

[45] Petzold, C., 2016. How does Xamarin.Forms fit in?. In: Creating Mobile Apps with

Xamarin.Forms. s.l.:Microsoft Press, pp. 6-8.

Bibliography

49

[46] Reynolds, M., 2014. Xamarin and Mono – a Pathway to the Unnatural. In: Xamarin

Essentials. s.l.:Packt Publishing Ltd., pp. 9-10, 126-127.

[47] Visual Studio, 2018. Hyper-V Android emulator support. [Online] Available at: htt

ps://devblogs.microsoft.com/visualstudio/hyper-v-android-emulator-support/

[Accessed 1 May 2019].

[48] Bayerlein, J., 2014. Xamarin Forms Docs : App Icons. [Online] Available at: http:

//www.joergbayerlein.de/wp-content/uploads/2019/02/App-Icons-US-V1.pdf

[Accessed 1 May 2019].

[49] Bayerlein, J., 2014. App Icons for Xamarin Forms. [Online] Available at: http://w

ww.joergbayerlein.de/?page_id=446 [Accessed 1 May 2019].

[50] Wang, Y., 2019. Investigation and Test of Xamarin.Essentials in Visual Studio on iPhone

Appendix A - List of figures

50

Appendix A - List of figures

Figure 3.1 Workload selection ... 4

Figure 3.2 Installation details ... 4

Figure 3.3 Windows Features ... 5

Figure 3.4 Command Prompt View ... 6

Figure 4.1 Master-Detail Page on Android, iOS & UWP .. 7

Figure 4.2 MVVM pattern [46] .. 8

Figure 4.3 Create Mobile Apps Project .. 8

Figure 4.4 Install Xamarin.Essentials ... 8

Figure 4.5 Device coordinate [3] .. 10

Figure 4.6 Performance of Accelerometer on Android, iOS & UWP 12

Figure 4.7 Performance of Application Information on Android, iOS & UWP 13

Figure 4.8 Performance of Barometer on Android, iOS & UWP .. 14

Figure 4.9 Performance of Battery on Android, iOS & UWP ... 15

Figure 4.10 Performance of Battery on Windows IoT ... 16

Figure 4.11 Performance of Clipboard on Android, iOS & UWP ... 16

Figure 4.12 Performance of Color Converters & Color Extensions on Android, iOS & UWP 17

Figure 4.13 Performance of Color Converters & Color Extensions on Windows IoT 18

Figure 4.14 Performance of Compass on Android, iOS & UWP ... 19

Figure 4.15 Performance of Connectivity on Android, iOS & UWP 20

Figure 4.16 Performance of Detect Shake on Android, iOS & UWP 20

Figure 4.17 Performance of Device Display Information on Android, iOS & UWP - 1 21

Figure 4.18 Performance of Device Display Information on Android, iOS & UWP - 2 22

Figure 4.19 Performance of Device Information on Android, iOS & UWP 23

Figure 4.20 Performance of Device Information on Windows IoT ... 23

Appendix B - List of listings

51

Figure 4.21 Performance of Email on Android & iOS ... 24

Figure 4.22 Performance of Email on UWP .. 25

Figure 4.23 Performance of Email on Windows IoT ... 25

Figure 4.24 Performance of File System Helpers on Android & iOS 27

Figure 4.25 Performance of File System Helpers on UWP ... 27

Figure 4.26 Performance of File System Helpers on Windows IoT .. 27

Figure 4.27 Performance of Flashlight on Android, iOS & UWP ... 28

Figure 4.28 Performance of Geocoding on Android & iOS ... 30

Figure 4.29 Geolocation permission on UWP .. 31

Figure 4.30 Performance of Geolocation on Android, iOS & UWP .. 32

Figure 4.31 Performance of Gyroscope on Android, iOS & UWP .. 34

Figure 4.32 Performance of Launcher on Android & iOS ... 35

Figure 4.33 Performance of Launcher on UWP ... 36

Figure 4.34 Structure of DependencyService [11] ... 36

Figure 4.35 Performance of Image Picker on Android, iOS & UWP 38

Figure 4.36 Permission of camera on UWP ... 40

Figure 4.37 Icon of the application .. 42

Appendix B - List of listings

Listing 4.1 Codes added in the “MainActivity.cs” ... 9

Listing 4.2 Frequency measurement .. 10

Listing 4.3 Basic implementation of Accelerometer [24] .. 11

Listing 4.4 Arithmetic average low-pass filter ... 12

Listing 4.5 AppInfo implementation [25] .. 13

Listing 4.6 Battery permission in C# [26] .. 15

Listing 4.7 Battery permission in XML [26] .. 15

Appendix B - List of listings

52

Listing 4.8 Implementation of Clipboard ... 16

Listing 4.9 Implementation of Color Converters & Color Extensions 17

Listing 4.10 Implementation of Compass .. 18

Listing 4.11 Connectivity permission in C# [27] ... 19

Listing 4.12 Connectivity permission in XML [27] ... 19

Listing 4.13 Implementation of Device Display Information [16] .. 21

Listing 4.14 Implementation of Device Information .. 22

Listing 4.15 Implementation of Email ... 24

Listing 4.16 Implementation of File System Helpers ... 26

Listing 4.17 Camera & flashlight permission in C# [12] ... 28

Listing 4.18 Camera & flashlight permission in XML [12] ... 28

Listing 4.19 Implementation of Flashlight [12] ... 28

Listing 4.20 Implementation of geocoding .. 29

Listing 4.21 Implementation of reverse geocoding [21] .. 29

Listing 4.22 Geolocation permission on Android in C# [29] ... 30

Listing 4.23 Geolocation permission on Android in XML [29] ... 31

Listing 4.24 Geolocation permission on iOS [29] .. 31

Listing 4.25 Implementation of Geolocation – 1 [29] .. 32

Listing 4.26 Implementation of Geolocation – 2 [29] .. 32

Listing 4.27 Implementation of Mirocharts ... 33

Listing 4.28 Implementation of Launcher .. 35

Listing 4.29 Permission of Image Picker on iOS ... 37

Listing 4.30 Implementation of MainActivity on Android [8] .. 37

Listing 4.31 Permission plugin code [6] .. 38

Listing 4.32 Initialization of CurrentActivity [6] ... 38

Appendix C - List of tables

53

Listing 4.33 Permission of camera on Android [6] .. 39

Listing 4.34 Configuration code for Android file provider – 1 [6] .. 39

Listing 4.35 Configuration code for Android file provider – 2 [6] .. 39

Listing 4.36 Permission of camera on iOS [6] ... 39

Listing 4.37 Implementation of picking a photo from the camera - 1 [6] 40

Listing 4.38 Implementation of picking a photo from the camera - 2 [6] 41

Listing 4.39 Get the build time of the project .. 42

Appendix C - List of tables

Table 4.1 Frequency of sensor speed ... 9

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Organization

	2 Background information and basic knowledge
	2.1 Xamarin.Forms and C#
	2.2 Xamarin.Essentials
	2.3 Visual Studio
	2.4 Windows IoT and Raspberry Pi

	3 Installation and Configuration
	3.1 Visual Studio Installation
	3.2 Emulator Configuration
	3.3 Physical Devices Prepared

	4 Features and additional tasks
	4.1 Accelerometer
	4.2 Application information
	4.3 Barometer
	4.4 Battery
	4.5 Clipboard
	4.6 Color Converters
	4.7 Compass
	4.8 Connectivity
	4.9 Detect Shake
	4.10 Device Display Information
	4.11 Device Information
	4.12 Email
	4.13 File System Helpers
	4.14 Flashlight
	4.15 Geocoding
	4.16 Geolocation
	4.17 Gyroscope
	4.18 Launcher
	4.19 Additional Task
	4.19.1 Image Picker
	4.19.2 Photo from Camera
	4.19.3 Other Implementation
	4.19.4 Problems of the other half of the features on Android

	5 Conclusion and outlook
	Acknowledgments
	Bibliography
	Appendix A - List of figures
	Appendix B - List of listings
	Appendix C - List of tables

