
i

Zusammenfassung der Arbeit

Abstract of Thesis

Fachbereich:

Department: :

Studiengang:

University course: :

Thema:

Subject:

Zusammenfassung:

Abstract:

Verfasser:

Author:

Betreuender Professor/in:

Attending Professor:

WS / SS:

The purpose of this thesis is to investigate the possibilities and limitations of a cross platform

developing tool Xamarin.Essentials. This thesis focuses on the performance on iOS devices.

Furthermore, comparisons of the behavior of the APIs on different platforms are also provided.

A demonstration program for the APIs is developed. This package reduces the workload of

cross platform developers to a large extent. However, it does not provide internal views for

some functions. Besides, it contains some redundant functions and lacks some fundamental

functions. Despite the drawbacks and limitations of some functions, Xamarin.Essentials proves

to be an effective cross platform development tool.

Electrical Engineering and Computer Science

Information Technology

Yuxuan Wang

Prof. Dr. Jörg Bayerlein

SS <2019>

Investigation and Test of Xamarin.Essentials in Visual Studio

on iPhone

ii

Table of Contents

Abstract of Thesis .. i

Table of Contents ... ii

1 Introduction .. 1

1.1 Description ... 1

1.2 Motivation .. 1

1.3 Structure of Thesis.. 1

2 Background Information .. 2

2.1 Visual Studio 2017 Professional .. 2

2.2 C# and Xamarin.Essentials ... 2

2.3 Xcode ... 2

2.4 Used Devices for Testing ... 2

3 Installation and Configuration ... 4

3.1 Visual Studio 2017 Professional and Xamarin.Essentials .. 4

3.2 Xcode and Visual Studio for Mac .. 4

3.3 Connection to Mac and iOS devices... 4

4 APIs of Xamarin.Essentials .. 6

4.1 Magnetometer ... 6

4.1.1 Coordination System and Reading ... 6

4.1.2 Implementing Magnetometer ... 6

4.1.3 Handling the Reading ... 8

4.1.4 Comparison on Different Platforms ... 9

4.2 MainThread .. 9

4.3 Map .. 10

4.3.1 Implementing Map ... 10

4.3.2 Comparison on Different Platforms ... 11

4.4 Browser .. 12

4.4.1 Comparison on Different Platforms ... 12

4.5 Orientation Sensor .. 13

iii

4.5.1 Implementation of Orientation Sensor ... 13

4.5.2 Coordination System and Reading ... 14

4.5.3 Rotation of Image ... 15

4.5.4 Filter ... 15

4.5.5 Comparison on Different Platforms ... 16

4.6 Phone Dialer ... 16

4.6.1 Comparison on Different Platforms ... 17

4.7 Platform Extensions ... 17

4.7.1 Implementation of Platform Extensions ... 17

4.7.2 Comparison on Different Platforms ... 20

4.8 Preferences ... 20

4.8.1 Implementing Preferences .. 20

4.8.2 Comparison on Different Platforms ... 21

4.9 Secure Storage .. 21

4.9.1 Comparison on Different Platforms ... 22

4.10 Share ... 22

4.10.1 Comparison on Different Platforms ... 23

4.11 SMS .. 23

4.11.1 Comparison on Different Platforms ... 23

4.12 Text-to-Speech ... 24

4.12.1 Implementing Text to Speech .. 24

4.12.2 Comparison on Different Platforms ... 26

4.13 Unit Converters .. 27

4.14 Version Tracking .. 28

4.15 Vibration... 28

4.16 Video Player ... 29

4.16.1 Implementing Video Player API .. 29

4.16.2 Video Source .. 30

4.16.3 Implementing Video Player in Demo Page .. 31

4.16.1 Comparison on Different Platforms ... 31

iv

5 Limitations on iOS Devices ... 33

5.1 Battery .. 33

5.2 Compass ... 33

5.3 Flashlight .. 33

5.4 Launcher ... 33

6 Conclusion .. 34

7 Outlook ... 35

8 Reference .. 36

9 List of images .. 41

10 List of Listings .. 42

1

1 Introduction

1.1 Description

This thesis aims to explore the possibilities and limitation of Xamarin.Essentials. This thesis

mainly discusses the lower half APIs on the API list of Xamarin.Essentials (see the full list on

the documentation page of Microsoft: [1]). Introduction to the lower half of the APIs and

implementation approaches are given. Also, a comparison of the performance on different

platforms is made. In addition, some special problems and limitations of the upper half APIs

on iOS devices are discussed, as well.

The introduction and implementation approaches of the upper half APIs and limitations of the

lower half APIs are included in another thesis written by Qin LU.

1.2 Motivation

There are several reasons that can explain why this thesis chooses to research on

Xamarin.Essentials.

Firstly, Xamarin.Essentials provides a list of cross platform APIs that support UWP, Andriod,

and iOS devices. The developers only need to program once for all three platforms. This could

save time for development on a large scale.

Secondly, the documentation of Xamarin.Essentials given by Microsoft is not desirably detailed.

This thesis can proceed further into Xamarin.Essentials and can hopefully serve as better

documentation for Xamarin.Essentials.

1.3 Structure of Thesis

This thesis is composed of 6 main sections.

In section 2, the background information for this thesis is provided. Besides, testing devices are

listed.

In section 3, implementing approaches for both hardware and software are given.

In section 4, the lower half APIs of Xamarin.Essentials are examined. In each subsection,

introductions, implementation approaches, and comparisons of them are provided. At the end

of this section, an additional API is implemented.

In section 5, limitations of the upper half APIs on iOS devices are briefly discussed.

In section 6 and section 7, a conclusion is drawn and several pieces of advice for further

researches are given.

2

2 Background Information
Background information needed for this thesis is provided in this section. Meanwhile, the

reasons to choose certain tools are also given. Necessary equipment for testing is listed at the

end of this section.

2.1 Visual Studio 2017 Professional

Visual Studio is an integrated development environment (IDE) released by Microsoft, which

enables its users to write code in various programming languages. [2] Among these

programming languages, C# supports Xamarin, a cross platform tool which is the main

technology used in this project. Visual Studio includes necessary and convenient features to

build a project: automatic code completion, source control, etc. [2] Visual Studio 2017 has 3

editions: Community, Professional, and Enterprise. [3] Enterprise edition has better tools

regarding cross platform development. However, the Enterprise edition is far too expensive for

an academic research project. Besides, Technische Hochschule Lübeck has a school license for

Professional edition. Thus, Visual Studio 2017 Professional is chosen.

2.2 C# and Xamarin.Essentials

C# is an object oriented programming language. C# shares many features with Java and other

C family programming languages. [4] Xamarin.Essentials is a package that provides various

APIs that give access to certain functions on UWP, Andriod, and iOS devices. [1] With these

APIs provided by Xamarin.Essentials and other features of Xamarin, the same application on

three platforms can “share up to 90% of their code”. [5]

Xamarin.Essentials supports C# and F#. As mentioned above, Java programmers, such as the

author, are likely to be familiar with C#. Thus, C# is chosen in this project.

2.3 Xcode

Xcode is an IDE on macOS used to develop applications on Apple devices. [6] The latest

version is Xcode 10.2. [7] In this project, Xcode is irrelevant to the programming part. It is only

used to build the application on iOS devices with the code passed by a Windows computer.

This Windows computer should have network access to the mac on which Xcode is installed.

Though it might be possible to program directly on mac with Visual Studio for Mac, in which

case the Windows computer is not needed, compatibility of Windows has made programming

on Windows a better choice.

2.4 Used Devices for Testing

The appendix program is tested on Android, iOS, UWP platforms. The testing devices involve

iPhone 6, Xiaomi 5, Surface Pro 4, iPad 6, Raspberry Pi, and some Windows computers.

A computer that runs on Windows 10 can also run the appendix program similar to a virtual

machine, although lots of sensors are missing on a traditional computer. Surface Pro 4 can be

viewed as a mobile device, though some sensors are still missing. Details can be found in

section 4. On the Raspberry Pi, Windows IoT, which is designed for embedded systems, is

3

installed. Consequentially, some of the functions of the appendix program should also work on

the Raspberry Pi.

4

3 Installation and Configuration
This section explains the procedure for installing the needed software and for connecting the

hardware.

3.1 Visual Studio 2017 Professional and Xamarin.Essentials

The installation pack can be found in the download page of Microsoft Visual Studio: [8]. During

the installation, Mobile Development with .NET under the tag Workloads should be selected as

shown in Figure 3.1. Also, Xamarin components should be selected under the tag Individual

components as shown in Figure 3.2. [9]

Figure 3.1: Selecting Workloads

Figure 3.2: Selecting Components

To start a project using Xamarin.Essentials, this package needs to be installed into the project.

In the Solution Explorer panel, right click on the solution and select Manage NuGet Packages.

Search for Xamarin.Essentials and install the package into all the projects. [10]

3.2 Xcode and Visual Studio for Mac

Xcode can be downloaded in App Store on Mac. Whereas Visual Studio for Mac is not available

on App Store. Visual Studio for Mac should be downloaded in the download page of Microsoft

Visual Studio: [8]. A warning might pop up when installing an application from the Internet on

Mac. It is recommended to install all the platforms and tools when installing Visual Studio for

Mac.

3.3 Connection to Mac and iOS devices

Mac and Windows computer should have network access to each other. [11] An easy way is to

connect them in a LAN network by using a router. The iOS device should be directly connected

to Mac.

5

In order to let Windows computer recognize Mac, remote login on Mac should be enabled. [12]

Settings for remote login can be found in Share pane in System Preferences as illustrated in

Figure 3.3.

Figure 3.3: Enabling Remote Login on Mac

On Windows computer, after creating a Xamarin project, click Pair to Mac button. A window

should show up, on which the Mac is shown. Select it and click Connect. During the first time

of connecting, user name and password of Mac is needed.

Figure 3.4: Dialog Requiring Password

Sometimes when Visual Studio is trying to load the program onto iOS devices, Visual Studio

is stuck for a long time. A possible reason could be that Visual Studio is compiling for the first

time after its start. Another possibility is that a dialog which requires the user password of Mac

pops up on Mac as shown in Figure 3.4. Only after inputting the password will Visual Studio

continue loading the program onto iOS devices.

6

4 APIs of Xamarin.Essentials
This section provides introductions and implementation approaches of the APIs of

Xamarin.Essentials. Meanwhile, comparisons of the APIs on each platform are given.

Moreover, a function that is not included in Xamarin.Essentials is also presented at the end of

this section.

4.1 Magnetometer

Xamarin.Essentials.Magnetometer gives access to the magnetometer sensor of the device. [13]

This class consists of one property IsMonitoring, two methods Start and Stop for controlling

the sensor, and one event ReadingChanged for handling the reading returned by the sensor.

The property IsMonitoring is a boolean value that indicates whether the sensor is monitoring.

The method Start should be called with a parameter that indicates the sensor speed. There are

four categories of sensor speed: Default, UI, Game, and Fastest. Generally, these four

categories imply a sensor speed from slow to fast. The frequency of getting data of each

category varies significantly depending on the platform and performance of the device itself.

For example, the frequency of Fastest on iPhone 6 merely reaches the frequency of Game on

Xiaomi 5. The reading returned by the sensor can be accessed in the event ReadingChanged.

4.1.1 Coordination System and Reading

The reading represents a three-dimensional vector which consists of three components of

magnetic field intensity in three axes. The unit of the reading is microtesla. [13]

The coordination system of the device is defined as follows: [14]

⚫ The positive X axis points to the right of the display in portrait mode.

⚫ The positive Y axis points to the top of the device in portrait mode.

⚫ The positive Z axis points out of the screen.

4.1.2 Implementing Magnetometer

Listing 4.1 shows a way to implement the magnetometer. Line 1 to line 5 shows the content of

the Clicked event of a button. Line 3 indicates that every time this event is triggered, the method

ToggleMagnetometer is called. In line 4, the text of the button changes between “Start” and

“Stop”. Line 7 to line 18 shows the content of the method ToggleMagnetometer. Line 9, 10, 15,

16, 17 is a try-catch block which handles some exceptions. This is not closely related to

implementing the magnetometer so it is omitted. Line 11 to line 14 guarantee that the sensor

changes its state every time the method is called. This way, the control on the sensor binds to

the button.

7

1. void OnButtonClicked(object sender, EventArgs e)

2. {

3. ToggleMagnetometer();

4. button.Text = String.Format("{0}", Magnetometer.IsMonitor-

ing == true ? "Stop" : "Start");

5. }

6.

7. public void ToggleMagnetometer()

8. {

9. try

10. {

11. if (Magnetometer.IsMonitoring)

12. Magnetometer.Stop();

13. else

14. Magnetometer.Start(speed);

15. }

16. catch ...

17. ...

18. }

Listing 4.1: Starting and Stopping Magnetometer

8

4.1.3 Handling the Reading

1. public MagnetometerDemo()

2. {

3. ...

4. Magnetometer.ReadingChanged += Magnetometer_ReadingChanged;

5. ...

6. }

7. void Magnetometer_ReadingChanged(object sender, MagnetometerChangedEventArgs e)

8. {

9. var data = e.Reading;

10. var data_X = data.MagneticField.X;

11. var data_Y = data.MagneticField.Y;

12. var data_Z = data.MagneticField.Z;

13. ...

14. var entries = new[]

15. {

16. new Entry((float)Math.Abs(Math.Round(data_X, 2)) * 10)

17. {

18. Label = "X",

19. ValueLabel = Math.Round(data_X, 2).ToString(),

20. Color = SKColor.Parse("#2c3e50")

21. },

22. ...

23. };

24. chartView.Chart = new RadarChart()

25. {

26. Entries = entries,

27. ...

28. };

29. }

Listing 4.2: Handling Data from Magnetometer

Listing 4.2 shows a way to retrieve and process the reading data from the magnetometer. Line

1 to line 6 indicates the constructor of the page. Unrelated codes are omitted. Line 4 shows that

the method shown from line 7 to line 29 is set as the event handler of the magnetometer. Line

9 to line 12 shows how to retrieve data from the parameter. As mentioned in section 4.1.1, the

reading consists of three components in three axes. Line 13 is some omitted unrelated code.

Line 14 to line 23 inputs the data into a local variable entries. Line 22 represents the input

processes of data_Y and data_Z. They are basically the same as the manipulation on data_X

shown from line 16 to line 21, therefore, they are omitted. Line 24 to line 28 puts the data into

a micro chart that can show the reading graphically. In line 27, the omitted code is setting some

other properties of the micro chart such as text size.

9

4.1.4 Comparison on Different Platforms

Figure 4.1: Comparison of Magnetometer

Figure 4.1 shows the performance of magnetometer on Android and iOS devices. As can be

seen, apart from the variation of the reading, magnetometer works similarly on Android and

iOS platforms. The reading on iOS is extremely larger than the magnetic field intensity of the

Earth. A possible cause could be the interference of the magnet nearby in the workshop when

the screenshot was taken. The author was using the magnet to test the compass on different

phones. Unfortunately, Raspberry Pi and Surface Pro 4 do not have magnetometer sensors so

this class is not tested on the UWP platform.

4.2 MainThread

Xamarin.Essentials.MainThread enables a block of code to run on the main thread. Codes that

need to access elements on user interface must run on the main thread, or sometimes called the

UI thread. Meanwhile, there are some methods running on threads other than the main thread,

such as methods that starts sensors with Game speed. When these methods are called, they need

to get back to the main thread. [15]

Code that needs to get back to the main thread can simply be put inside the block shown in

Listing 4.3. Line 1 calls the method BeginInvokeOnMainThread, which requires an Action as a

parameter. [16] Line 1 uses a lambda expression to shorten the code. The code between line 2

and line 4 will run on the main thread.

1. MainThread.BeginInvokeOnMainThread(() =>

2. {

3. // code that needs to get back to the main thread

4. });

Listing 4.3: Code Block for Main Thread

10

When methods that start sensors are called, it is recommended to include this part of code inside

the block above regardless of the sensor speed. When slower sensor speed is chosen and this

part of code is already running on the main thread, use of MainThread seems redundant. On the

contrary, the performance of the program hardly worsens. [15] Moreover, it prevents further

bugs when sensor speed needs to be adjusted in the future.

4.3 Map

Xamarin.Essentials.Map gives access to the default map application of the device. [17] This

class does not provide an internal map function. Instead, it enables the application to jump to

the default map application with a specified placemark.

The method OpenAsync can be called with one or two parameters. The first parameter is either

a Location instance or a Placemark instance. The second parameter is a MapLaunchOptions

instance, which is an optional parameter. [18] Also, it is possible to replace the first parameter

with two Double instances as the geographic coordinate. The compiler is still able to read it. A

Location instance is constructed by geographic coordinates. A Placemark instance consists of

much more detailed information than a Location instance. For example, the country name can

be specified in a PlaceMark. The MapLaunchOptions instance is used to describe the placemark

shown on the map and to choose the navigation mode, such as by car or by bicycle. [19]

4.3.1 Implementing Map

This class does not ask for location information and is only responsible for gathering destination

information and jumping to the map application. The navigation proceeds in the map

application. Therefore, no specific implementation regarding privacy or permission is needed.

1. public MapDemo()

2. {

3. ...

4. button.Clicked += OnButtonClickedAsync;

5. ...

6. }

7. async void OnButtonClickedAsync(object sender, EventArgs e)

8. {

9. var location = new Location(47.645160, -122.1306032);

10. var options = new MapLaunchOptions

11. {

12. NavigationMode = NavigationMode.Driving

13. };

14. await Map.OpenAsync(location, options);

15. }

Listing 4.4: Implementing Map

Listing 4.4 shows a way to implement the Map class. Line 1 to line 6 is the constructor of the

demonstration page. Line 4 sets the method OnButtonClickedAsync as the Clicked event of a

button. Line 7 to line 15 is the content of the method. Line 9 is constructing a Location instance.

11

Line 10 to line 13 is constructing a MapLaunchOptions instance that indicates a navigation

mode of driving. Line 14 calls the method OpenAsync with the two instances mentioned above.

This method is an asynchronous method so that the “await” keyword is used here. As a result,

after this block of code is executed, the application should jump to the default map application

and navigates to a place which has a geographic coordinate of (47.64, -122.13) by car.

4.3.2 Comparison on Different Platforms

As can be shown in Figure 4.2, Figure 4.3, and Figure 4.4, Map works similarly on different

platforms. They open the map with the same specified placemark in spite of the different display.

A map application is not installed on the Raspberry Pi. Consequently, this class does not work

on a Raspberry Pi.

Figure 4.2: Map on Android

Figure 4.3: Map on iOS

Figure 4.4: Map on UWP

12

4.4 Browser

Xamarin.Essentials.Browser gives access to the default browser of the device. [20] This class

does not provide an internal browser function. Instead, it jumps to the default browser

application or to a new page inside the application, depending on the parameter.

This class contains a method OpenAsync. The first parameter of this method can either be a Uri

instance or a string. A string is much easier and more direct, therefore, a string is recommended

here. The first parameter should be a complete URI when calling the method OpenAsync. For

example, “https://www.google.com/” should be used instead of “www.google.com”. A

formatting method that helps complete URI using regular expression is included in the appendix

program. Further help methods that help writing legal URI can be written by using regular

expressions.

The second parameter is an optional parameter. It can either be a BrowserLaunchMode instance

of a BrowserLaunchOptions instance. Launch mode has two categories: SystemPreferred and

External. SystemPreferred indicates that the webpage will be opened on the other page inside

the application. External literally means the webpage will be opened externally. In

BrowserLaunchOptions, more customization options can be specified, such as the toolbar color.

[21]

4.4.1 Comparison on Different Platforms

Figure 4.4 shows that the application opens Apple’s official website with its default browser

inside the application. Figure 4.6 shows that the application opens google with Safari inside the

application. This results from the launch mode of SystemPreferred set in the program. However,

as Figure 4.7 shows, the application on UWP opens the webpage with Google Chrome, which

is an external browser, regardless of the launch mode set in the program. This means that it is

of no use to set BrowserLaunchMode for the UWP platform. In spite of this flaw, this class is

still able to achieve its main purpose on the UWP platform.

Figure 4.5: Browser on Android

Figure 4.6: Browser on iOS

13

Figure 4.7: Browser on UWP

4.5 Orientation Sensor

Xamarin.Essentials.OrientationSensor enables the application to monitor the orientation of the

device. [14]

4.5.1 Implementation of Orientation Sensor

Control of orientation sensor is basically the same as that of magnetometer which is described

in section 4.1.2. As for demonstrating the reading, a picture is introduced in the demonstration

page. The demonstration page aims to manipulate the attributes of the image so that the arrow

in the picture acts as if it were pointing to a fixed direction when the device rotates. The

attributes include RotationX, RotationY, and Rotation.

Listing 4.5 shows a way to handle the data and present it through manipulating the image. Line

1 indicates that this is the ReadingChanged event of the orientation sensor. Line 3, 4, 21 is a

block in order to get back to the main thread. Details about the main thread can be found in

section 4.2. Line 5, 7, 8, 9, and 10 is retrieving the data. Line 12, 13, and 14 is processing the

data. Line 19, 20, 21 is setting the attribute the processed data. Details about how to process

this data can be found in section 4.5.3. The variables zero and delta appeared in line 17 and line

19 are explained in section 4.5.5.

14

1. void OrientationSensor_ReadingChanged(object sender, OrientationSensorChangedEven-

tArgs e)

2. {

3. MainThread.BeginInvokeOnMainThread(() =>

4. {

5. var data = e.Reading;

6.

7. var x = data.Orientation.X;

8. var y = data.Orientation.Y;

9. var z = data.Orientation.Z;

10. var w = data.Orientation.W;

11.

12. var α = Math.Atan2(2 * (x * y + z * w), 1 - 2 * (y * y + z * z)) * 180 / Math.P

I;

13. var β = Math.Asin(2 * (x * z - y * w)) * 180 / Math.PI;

14. var γ = Math.Atan2(2 * (x * w + y * z), 1 - 2 * (z * z + w * w)) * 180 / Math.P

I;

15.

16. zero = α;

17.

18. image.Rotation = α - delta;

19. image.RotationY = β;

20. image.RotationX = -γ - 180;

21. });

22. }

Listing 4.5: Implementing Orientation Sensor

4.5.2 Coordination System and Reading

The reading has four values. Altogether the four values represent the orientation relative to the

zero position of the device by comparing the coordination system of both. The coordination

system of the device is defined as follows: [14]

⚫ The positive X axis points to the right of the display in portrait mode.

⚫ The positive Y axis points to the top of the device in portrait mode.

⚫ The positive Z axis points out of the screen.

The coordination system of zero position is set every time the sensor is started and is defined

as follows:

⚫ The positive X axis is tangent to the surface of the Earth and points to the right of the device

in portrait mode.

⚫ The positive Y axis is tangent to the surface of the Earth and points to the top of the device

in portrait mode.

⚫ The positive Z axis is perpendicular to the surface of the Earth and points up.

15

On the Android and UWP platform, the coordination system with which the device is

comparing its own one is different. This will be discussed in section 4.5.5.

Assume that the rotation axis is described by a normalized vector (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) and the rotation

angle is 𝜃 , the four values of the reading have the following meaning:

(𝑎𝑥 𝑠𝑖𝑛 (
𝜃

2
) , 𝑎𝑦 𝑠𝑖𝑛 (

𝜃

2
) , 𝑎𝑧 𝑠𝑖𝑛 (

𝜃

2
) , 𝑐𝑜𝑠 (

𝜃

2
)) . All angles here are in radian.

4.5.3 Rotation of Image

The reading has the same form as quaternions. The three attributes of the image have the same

form as Euler angles. Mathematically, rotating a coordinate system can be described equally by

quaternions or by Euler angles. Therefore, it is possible to convert quaternion into Euler angles.

Assume Euler angle is written in (𝛼, 𝛽, 𝛾), the quaternion is written in (𝑥, 𝑦, 𝑧, 𝑤), formulas for

conversion between quaternions and Euler angles are shown in Listing 4.6. [22]

𝛼
𝛽
𝛾
 =

𝑎𝑟𝑐𝑡𝑎𝑛

2(𝑥𝑦 + 𝑧𝑤)

1 − 2(𝑦2 + 𝑧2)

𝑎𝑟𝑐𝑠𝑖𝑛 2(𝑥𝑧 − 𝑦𝑤)

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑥𝑤 + 𝑦𝑧)

1 − 2(𝑧2 + 𝑤2)

Listing 4.6: Formulas for Conversion between Quaternions and Euler Angles

In C#, a method Atan2 is introduced to handle zero denominators in inverse tangent functions.

Generally speaking, Atan2 method is more stable than Atan method. Take into consideration

the variation between the coordinate system of images in C# and the coordinate system of the

device defined in section 4.5.2, the conversion from Euler angles to the attributes of the image

can be described in the equation shown in Listing 4.7.

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑌
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑋

 =

𝛼
𝛽

−𝛾 − 𝜋

Listing 4.7: Relation between Euler Angles and the attributes

Note that all angles here are in radian and should be converted into degrees when coding.

4.5.4 Filter

No filter is needed here. Unlike Xamarin.Essentials.Accelerometer, which is discussed in the

thesis written by Qin Lu, the data returned by this class is extremely stable. A possible reason

is that these data are calculated by readings from accelerometer and gyroscope and an effective

filter to deal with the jitter is already used. Another hypothesis is that these data are from another

sensor with excellent performance and hardly undergo any jitter.

16

4.5.5 Comparison on Different Platforms

As mentioned in section 4.5.2, the coordination system with which the Android or UWP device

is comparing its own one is different. For an Android or UWP device, the reading represents

the orientation relative to the Earth. The coordination of the Earth is defined as follows: [14]

⚫ The positive X axis is tangent to the surface of the Earth and points east.

⚫ The positive Y axis is tangent to the surface of the Earth and points north.

⚫ The positive Z axis is perpendicular to the surface of the Earth and points up.

In order to make rotation of the image in the demonstration page look the same on different

platforms, certain changes are implemented. A zero button is provided in the demonstration

page on these two platforms. After clicking the zero button, the application records the current

position and set it to zero position. As a result, the application on Android or UWP works the

same as on iOS after clicking the zero button.

This is achieved by introducing two variables: zero and delta, which appeared in Listing 4.5.

As shown in line 16 of Listing 4.5, the variable zero is always recording the current position of

the device. The variable delta serves as an intermediate variable and is originally set to zero.

The moment the zero button is clicked is set as the manual zero position. After the zero button

is clicked, the value of zero is passed to delta. Consequentially, the difference between the

coordination system of the Earth and that of the manual zero position is represented by delta.

By subtracting one of the Euler angles by delta, the difference between the two coordination

system is eliminated.

Figure 4.8: Comparison of Orientation Sensor

Figure 4.8 shows the performance of this class on each platform. Unfortunately, it is no possible

to display movement through screenshots. It performs much better on a moving portable device.

There does not exist needed sensors on Raspberry Pi so it is not tested on the Raspberry Pi.

4.6 Phone Dialer

Xamarin.Essentials.PhoneDialer gives access to the phone application of the device. [23]

17

After calling the method Open, the application opens the dialer with the number specified in

the parameter. The method Open requires a string as its parameter. Therefore, the number

should be written in strings instead of integers.

4.6.1 Comparison on Different Platforms

Figure 4.9: Comparison of Phone Dialer

As shown in Figure 4.9, this class works similarly on iOS and on Android. After clicking the

dial button, the device calls the specified number. Unfortunately, Surface Pro 4, Windows

computer, Raspberry Pi do not have a dialer. So this class is not tested on the UWP platform.

4.7 Platform Extensions

Xamarin.Essentials provides some help methods that can convert some types from system

version to platform version. Note that these help methods can only be called in iOS, Android,

or UWP project. [24] Xamarin.Essentials currently provide help methods for four types: color,

point, rectangle, and size. [25]

4.7.1 Implementation of Platform Extensions

As mentioned above, these help methods can only be called in platform projects. As a result,

an interface in the main project is needed. The interface should be implemented using platform

extensions in each platform project.

Listing 4.8 is the whole content of the interface. Line 1 introduces the package System.Drawing

to ensure the Point, Size, and Rectangle class below come from a system package. Line 3

indicates the namespace. Line 5 indicates the name of the interface. Line 7 to line 9 specifies

the method names, return types, parameters without the bodies of the methods.

18

1. using System.Drawing;

2.

3. namespace EssentialsDemo

4. {

5. public interface IPlatformExtensions

6. {

7. string GetPlatformPoint(Point point);

8. string GetPlatformSize(Size size);

9. string GetPlatformRect(Rectangle rect);

10. }

11. }

Listing 4.8: IPlatformaExtensions.cs

1. using EssentialsDemo.iOS;

2. using Xamarin.Essentials;

3. using Xamarin.Forms;

4.

5. [assembly: Dependency(typeof(PlatformExtensions))]

6.

7. namespace EssentialsDemo.iOS

8. {

9. public class PlatformExtensions : IPlatformExtensions

10. {

11. public string GetPlatformPoint(System.Drawing.Point point)

12. {

13. var platform = point.ToPlatformPoint();

14. return platform.ToString();

15. }

16.

17. public string GetPlatformSize(System.Drawing.Size size)

18. {

19. var platform = size.ToPlatformSize();

20. return platform.ToString();

21. }

22.

23. public string GetPlatformRect(System.Drawing.Rectangle rect)

24. {

25. var platform = rect.ToPlatformRectangle();

26. return platform.ToString();

27. }

28. }

29. }

Listing 4.9: PlatformExtensions.cs in iOS Project

19

Listing 4.9 shows the whole content of a class that implements the interface in Listing 4.8. Only

the class in the iOS project is shown here. However, the class in each platform project is almost

the same except the suffix of the namespace. Line 1 to line 3 is introducing packages. Note that

Xamarin.Essentials is introduced here so that the help functions can be accessed. Line 5

indicates that the class PlatformExtensions here provides a concrete implementation of some

interface. Line 7 indicates the namespace. Line 9 indicates that this class PlatformExtensions is

implementing the interface IPlatformExtensions. Line 11 to line 15 implements the method

shown in line 7 of Listing 4.8. Due to the introduction of Xamarin.Forms, the class Point needs

to be specified that it comes from the System.Drawing package instead of Xamarin.Forms. Line

13 calls the platform extension method ToPlatformPoint. As a result, the parameter point is

now in the form of CoreGraphics.CGPoint, which is a class that can be recognized by iOS

devices. Line 14 returns the parameter point in its platform form. Line 17 to line 27 is basically

doing the same thing.

Listing 4.10 is a Clicked event of a button. Line 3, 4, and line 8 to line 12 shows a try-catch

block. Line 11 indicates that when an exception is caught, an alert is displayed. Line 5 gathers

the text in the entry into a local Point variable. Line 6 passes the system form of the point to the

first label. Line 7 passes the platform form of the point to the second label. Line 7 uses the class

DependencyService to retrieve the platform-specific implementation of IPlatformExtensions.

The implementation approaches of the other classes supported by platform extensions are

basically the same.

1. void OnButtonClicked(object sender, EventArgs e)

2. {

3. try

4. {

5. var system = new System.Drawing.Point(Int32.Parse(entry.Text), Int32.Parse(entr

y2.Text));

6. label.Text = "System: " + system.ToString();

7. label2.Text = "Platform: " + DependencyService.Get<IPlatformExtensions>().GetPl

atformPoint(system);

8. }

9. catch (Exception)

10. {

11. DisplayAlert("Error", "An error has occured.", "OK");

12. }

13. }

Listing 4.10: Referring to the Implemented Method

20

4.7.2 Comparison on Different Platforms

Figure 4.10: Comparison of Platform Extensions

As Figure 4.10 shows, platform extensions works differently on each platform. A first sight of

this difference can be gained from the different forms of platform display of Point. Internally,

the Point classes on these platforms are completely different. This means the three platforms

are interpreting the same code differently.

4.8 Preferences

Xamarin.Essentials.Preferences enables the application to store preferences in key-value pairs.

[26] In other words, users’ choices can be reproduced by the application when the application

is opened the next time.

Most common types, such as string, int, DateTime can be stored with the method Set. A unique

key is required for each value. The method Get requires a string as the key and a default value

if the key does not exist. A third parameter indicating sharedName is optional. Keys and values

can be cleared using the method Clear. When calling the method Clear, sharedName can be

specified. All key-value pairs with the same sharedName can be cleared at once. [27]

4.8.1 Implementing Preferences

In the appendix program, content input by users will be stored and when this application is re-

opened, this page will be the same as the application closed.

In order to achieve this, the method Get is used when initializing the page. A default value can

be specified in the second parameter. Set methods are called in the input elements’ content

changed events. Listing 4.11 shows a way to realize this.

Line 1 to line 10 shows that the initialization of the switcher is written in the constructor of the

page. Line 6 sets the IsToggled property with the return value of the method Get. Initially, the

value for the key “IsToggled” is not set. Consequentially, this method returns false as specified

in the parameter. Line 8 sets the method OnSwitcherToggled as the Toggled event of the

21

switcher. Line 11 to line 14 describes the method OnSwitcherToggled. Generally speaking,

whenever the switcher is toggled, its current state is saved with the key “IsToggled”.

Consequentially, when the next time the application is opened and the switcher is initialized,

line 6 will get the last saved state.

1. public PreferencesDemo()

2. {

3. ...

4. switcher = new Switch

5. {

6. IsToggled = Preferences.Get("IsToggled", false)

7. };

8. switcher.Toggled += OnSwitcherToggled;

9. ...

10. }

11. void OnSwitcherToggled(object sender, ToggledEventArgs e)

12. {

13. Preferences.Set("IsToggled", e.Value);

14. }

Listing 4.11: Implementing Preferences

4.8.2 Comparison on Different Platforms

Figure 4.11: Comparison of Preferences

As Figure 4.11 shows, despite that the display on each platform has small variations, this class

works equivalently on each platform.

4.9 Secure Storage

Xamarin.Essentials.SecureStorage enables the application to store strings in key-value pairs.

[28] From a perspective of coding, secure storage works similarly with Preferences.

22

Unlike the class Preferences, the method GetAsync does not have a second parameter for a

default value and will return a null value when the key does not exist. [28] The method SetAsync

works similarly to that of Preference, except that this method is an asynchronous method and

sharedName is not available here.

4.9.1 Comparison on Different Platforms

On the secure storage demonstration page, the maximum length of storage can be tested. The

maximum length varies from different devices. The maximum length on different devices rages

from 10 kilobytes to a few megabytes. Note that the performance is not desirable when working

with large strings so that this class is not suitable for storing large strings.

Figure 4.12: Comparison of Secure Storage

As Figure 4.12 shows, despite the maximum length of the content, this class works similarly on

each platform. This class is also available on Raspberry Pi.

4.10 Share

Xamarin.Essentials.Share enables the application to share data to other applications on the

device. [29]

With the method RequestAsync, a text or a URI can be shared. The content is specified in the

parameter by creating a new instance of ShareTextRequest and setting its properties. A

ShareTextRequest has four properties: Subject, Text, Title, Uri. [30]

23

4.10.1 Comparison on Different Platforms

Figure 4.13: Comparison of Share

As shown in Figure 4.13, the string “Share Web Link” appears on Android and UWP, whereas

not on iOS. “Share Web Link” is the Title property in the demonstration page. This means Title

property is not used on the iOS platform. Meanwhile, Subject property is not used on iOS and

on UWP. Unfortunately, this class does not work on Windows IoT.

4.11 SMS

Xamarin.Essentials.SMS gives access to the default SMS application of the device. [31] After

calling the method ComposeAsync the application jumps to the default SMS application with

the specified information in the parameter.

The method ComposeAsync needs a SmsMessage instance as its parameter. The payload of the

message and recipients can be specified when creating the SmsMessage instance. Recipients

can either be a string or an array of string representing a list of recipients. [32]

4.11.1 Comparison on Different Platforms

Figure 4.14 shows the SMS demonstration page on Android. After clicking the send button, the

method OpenAsync is called and the application jumps to the SMS application with the message

content and recipient number entered in the entries. Figure 4.15 shows the SMS demonstration

page on iOS. The process is the same on iOS.

On Surface Pro 4 and Windows Computers, after clicking the send button, the application opens

an application called Messaging. However, this application only shows SMS texts from the

mobile phone if the mobile phone is bound to the computer. The application can’t send SMS

texts.

On the other hand, the Raspberry Pi does not respond to the method. Therefore, this class is not

tested on the UWP platform. Given the simplicity of the function of this class, it is highly

possible that this class would work on UWP platform, as well.

24

Figure 4.14: SMS on Android

Figure 4.15: SMS on iOS

4.12 Text-to-Speech

Xamarin.Essentials.TextToSpeech enables the application to read text. [33]

The method SpeakAsync can be called only with a string, or with a string and a SpeechOptions

instance, or with a string and a CancellationToken instance, or with all of them. Considering

multithreading is not involved here, a cancellation token is not needed. The properties Volume,

Pitch, and Locale can be set in SpeechOptions. Volume and Pitch are both float values. Volume

ranges from 0 to 1 and Pitch ranges from 0 to 2. With adjustment of Pitch, the pitch of the voice

can be lower or higher, though the difference is not obvious.

4.12.1 Implementing Text to Speech

1. slider_volume = new Slider { Maximum = 1.0 };

2. slider_pitch = new Slider { Maximum = 2.0 };

3. slider_pitch.Value = 1.0;

4. slider_volume.Value = 0.75;

Listing 4.12: Sliders for Volume and Pitch

As Listing 4.12 shows, the adjustment of Volume and Pitch is made possible by introducing

two sliders. Line 1 and line 2 is constructing the sliders as well as setting the maximum values

of them. Line 3 and line 4 are setting the default value of these two properties.

25

1. public TextToSpeechDemo()

2. {

3. private Locale locale;

4. private IEnumerable<Locale> locales;

5. ...

6. GetLocalesAsync();

7. foreach (Locale localeValue in locales)

8. {

9. picker_locale.Items.Add(localeValue.Language);

10. }

11. picker_locale.SelectedIndexChanged += Picker_locale_SelectedIn-

dexChanged;

12. ...

13. }

14. private async void GetLocalesAsync()

15. {

16. locales = await TextToSpeech.GetLocalesAsync();

17. }

18. private void Picker_locale_SelectedIndexChanged(object sender, Even-

tArgs e)

19. {

20. locale = locales.ElementAt(picker_locale.SelectedIndex);

21. }

Listing 4.13: Pickers and Methods for Locale

Listing 4.13 shows a way to implement a picker for locales. Line 1 to line 13 is the constructor

of the demonstration page. Line 6 gets all the locales the device supports. It could have been

more simple if line 16 can be put in line 6. However, TextToSpeech.GetLocalesAsync is an

asynchronous method and an asynchronous method cannot be called in a constructor.

A solution is to introduce two intermediate variables to mend this contradiction as line 3 and

line 4 shows. Two private variables are introduced. Line 6 calls a method shown from line 14

to line 17 and this method calls the asynchronous method TextToSpeech.GetLocalesAsync.

Ultimately, the return value of TextToSpeech.GetLocalesAsync is set to the private variable.

Line 7 to line 10 uses foreach to put all the locales into the picker.

Line 11 sets the SelectedIndexChanged event of the picker, which is shown from line 18 to line

21. Line 20 sets the variable locale to the selected locale in the picker.

26

1. private void Button_speak_Clicked(object sender, EventArgs e)

2. {

3. if (!string.IsNullOrWhiteSpace(entry.Text))

4. {

5. SpeakNow((float)slider_volume.Value, (float)slider_pitch.Value, loca

le, entry.Text);

6. }

7. else

8. {

9. SpeakNow((float)slider_volume.Value, (float)slider_pitch.Value, loca

le, "Please enter something.");

10. }

11. }

12.

13. public async Task SpeakNow(float volume, float pitch, Locale locale, string

text)

14. {

15. var settings = new SpeechOptions()

16. {

17. Volume = volume,

18. Pitch = pitch,

19. Locale = locale

20. };

21. await TextToSpeech.SpeakAsync(text, settings);

22. }

Listing 4.14: Implementing Text to Speech

Listing 4.14 shows the way to finally make the application “speak”. Line 1 to line 11 is a Clicked

event of a button. Line 3 judges whether the entry is empty. If it is not empty, line 5 passes the

value of two sliders, the value of the picker, and the content in the entry to the method

SpeakNow. If it is empty, it instead passes “Please enter something” to the method. Line 13 to

line 22 calls the method SpeakAsync in a manner that section 4.12 earlier described. Line 17,

18, 19 sets the properties with the parameters. Line 21 calls the method SpeakAsync.

4.12.2 Comparison on Different Platforms

On mobile devices, locale supports most common languages, such as English, French. It is not

recommended to use the method FirstOrDefault to get the default locale. The reason is that this

usually does not work and ends up selecting Arabic or French instead of the current language

of the system. In the appendix program, a picker is provided to select the language. If there is a

need for reading the text in the default language without having to select the language first, it

is recommended not to set locale in SpeechOptions.

Earlier in section 4.12.1, we had to adopt a strange approach to get all the supported locales.

Unfortunately, on the Android platform, the processor is dealing with the asynchronous

methods differently from other platforms. The items of the picker are added before the

27

asynchronous method is completed. This means there is nothing in the picker. A solution is to

postpone the whole process, which means not putting the initiation code in the constructor. The

same code is moved into a Clicked event of the get locales button. This way, the locales are first

obtained and then the items of the picker are added.

Figure 4.16: Comparison of Text to Speech

As can be shown in Figure 4.16, Android and iOS devices support many languages and the

performance of the method FirstOrDefault is not desirable. The Raspberry Pi does not have a

speaker so this class is not tested on Raspberry Pi.

4.13 Unit Converters

Xamarin.Essentials.UnitConverters provides 23 methods that can convert a unit into another.

[34]

For instance, if there is a need for converting degrees to radians, the method DegreesToRadian

can be chosen. By inputting a degree value to the parameter, the return value should be the

corresponding radian value.

Figure 4.17: Comparison of Unit Converters

28

As shown in Figure 4.17, this class works nearly the same on each platform. Meanwhile, it also

works on the Raspberry Pi.

4.14 Version Tracking

Xamarin.Essentials.VersionTracking gives access to version and some related information

about the application. [35]

Most properties of this class are strings except VersionHistory and BuildHistory. They are lists,

or specifically, IEnumerable<string>. In order to print the elements, an iterator or the method

foreach can be used.

The meaning of most properties can be obtained from their name. For example,

VersionTracking.IsFirstLaunchEver indicates whether this application is launched for the first

time ever or not.

Information about version and build can be altered in each platform project in Visual Studio.

For Android, information can be manipulated in AndroidManifest.xml in the Android project.

For iOS, information can be changed in Info.plist in the iOS project. For UWP, information can

be altered in Package.appmanifest in the UWP project.

As Figure 4.18 shows, this class successfully displays the version information on each platform.

Figure 4.18: Comparison of Version Tracking

4.15 Vibration

Xamarin.Essentials.Vibration enables the application to vibrate for a certain period of time. [36]

By calling the method Vibrate, the device should vibrate for default vibration duration. Another

option is to set the vibration duration in the parameter. The unit of time duration is in

millisecond. The time duration can be set to a maximum of 5,000 milliseconds. A cancel method

is also provided.

29

On iOS devices, Vibration in setting should be set to “On” so that the device is allowed to

vibrate. Also, any vibration other than 0.5 seconds is not allowed on iOS devices. Therefore,

whatever the code is, iOS devices will only vibrate for 0.5 seconds.

Figure 4.19 shows the demonstration page of this class. Unfortunately, Surface Pro 4 does not

support vibration. The Raspberry Pi does not have vibrators, either. Therefore, this class is not

tested on the UWP platform.

Figure 4.19: Comparison of Vibration

4.16 Video Player

This video player uses the default video player elements on the devices to perform an internal

video player in an application. Video player is considered a fundamental function on mobile

devices. However, an API for the video player is not included in Xmarin.Essentials.

4.16.1 Implementing Video Player API

In order to implement a video player, not only classes in the main project are required, but

additional classes in the platform projects are also needed.

The classes needed for implementing the video player are all included in folders named

FormsVideoLibrary. There is a FormsVideoLibrary folder in each project. This makes the code

in the demo page simpler and easier to read. Furthermore, this makes it easier to copy the code

for implementation to other projects. The code for implementation should work in other projects

with small changes only in namespaces.

The class VideoPlayer in the main project defines the necessary properties needed in

VideoPlayerRenderer. [37]

There is a VideoPlayerRenderer class in each platform project. VideoPlayerRenderer deals

with the video player view along with the controllers on each platform. [37]

30

The abstract class VideoSource acts like a method library that provides three methods to specify

the video source of the video player.

The class VideroSourceConverter rewrites the class TypeConverter. This class is invoked when

the view of the application is written in XMAL and the Source property of a video player is set

to a string. [38] In Video Player page of the appendix page, the video player is written directly

in a cs file so this class is not invoked.

The class VideoPicker in each platform project extends the interface IVideoPicker in the main

project. VideoPicker deals with events when picking the source file. [39]

4.16.2 Video Source

The classes FileVideoSource, ResourceVideoSource, and UriVideoSource make it possible to

set a file, an application resource, and a URI as the source of the video player respectively.

On iOS devices, only videos taken by the device can be picked as a file source. Videos

downloaded by TV application, for example, is not included in the image library. Therefore,

they can not be picked. If a video is to be played as a resource, it must be put in the Resource

folder in the iOS project and its Build Action property must be set as BundleResource. The

resource video should be referred to as its relative path to the Resource folder. [40]

On Android devices, if a video is to be played as a resource, it must be put in a folder named

“raw” in Resource folder in the Android project. Its Build Action property should be set as

AndroidResource. The resource video can simply be referred to as its name as a string when

coding. [40]

On UWP devices, only videos in images or videos folders of the device can be picked as file

source of the video player. In order to allow the application to select videos from images and

videos folder, Pictures Library and Videos Library should be selected under the tag Capabilities

in the file Package.appxmanifest in the UWP project. In order to play a resource video, the

video can simply be put anywhere in the UWP project and its Build Action property should be

set as Content. In the appendix program, a video is put in a folder named Video. Accordingly,

this video should be referred to as Video/UWPApiVideo.mp4 when coding. [40]

If a web video is to be played, the URI of the web video should be specified when setting the

Source property of the video player. This can be achieved by calling the static method FromUri

from VideoSource class and set the URI as a string as the parameter.

31

4.16.3 Implementing Video Player in Demo Page

1. public VideoPlayerDemo()

2. {

3. ...

4. videoPlayer = new VideoPlayer { VerticalOptions = LayoutOptions.FillAn-

dExpand };

5. // videoPlayer.Source = VideoSource.FromUri("https://archive.org/down-

load/BigBuckBunny_328/BigBuckBunny_512kb.mp4");

6. // videoPlayer.Source = VideoSource.FromRe-

source("Video/UWPApiVideo.mp4");

7. // videoPlayer.Source = VideoSource.FromResource("UWPApiVideo.mp4");

8. button_selectSource = new Button { Text = "Select Source" };

9. button_selectSource.Clicked += Button_selectSource_ClickedAsync;

10. ...

11. }

12. private async void Button_selectSource_ClickedAsync(object sender, Even-

tArgs e)

13. {

14. string filename = await Dependen-

cyService.Get<IVideoPicker>().GetVideoFileAsync();

15.

16. if (!String.IsNullOrWhiteSpace(filename))

17. {

18. videoPlayer.Source = VideoSource.FromFile(filename);

19. }

20. }

Listing 4.15: Implementing Video Player in Demo Page

Listing 4.15 shows a way to implement the video player using the API implemented in section

4.16.1. Line 1 to line 11 is the constructor of the demonstration page. Line 4 is initiating the

video player. Line 5 shows a way to set a web video as the source using a URI. Line 6

demonstrates a way to set the resource video in the UWP package as the source. Line 7 sets the

resource video in the Android and iOS package as the source. Note that the path and the name

should be adjusted accordingly. Line 8 creates a button with a text “Select Source”. Line 9 binds

the method from line 12 to line 20 to the Clicked event of the button created in line 8. Line 14

uses the class DependencyService to retrieve the platform-specific implementation of the

interface IVideoPicker. As a result, each platform invokes its own video picker view to pick the

video source. If the user clicks cancel when picking video source, the variable filename could

be null. This error is prevented by line 16. Line 18 sets the picked file to be the video source.

4.16.1 Comparison on Different Platforms

Setting the property VerticalOptions is extremely important. The other elements mentioned in

the other sections can simply be initiated without VerticalOptions but video player is an

32

exception. If VerticalOptions is not set, the view of video player will not appear in the user

interface of UWP application.

Figure 4.20: Comparison of Video Player

As Figure 4.20 shows, video player uses the default video player of each platform.

33

5 Limitations on iOS Devices
The upper half APIs in the API list [1] are discussed in this section. APIs with obvious

variations on different platforms are focused in this section. Specific limitations on iOS devices

are explained. Detailed introductions, implementation approaches, and comparisons on each

platform can be found in the thesis written by Qin Lu. The APIs that are not mentioned are

considered not having sizeable variations on the iOS platform.

5.1 Battery

According to the API documentation [41], there are altogether five categories of PowerSource:

AC, Battery, Unknown, Usb, and Wireless. While on iOS devices, there are only two out of five

possible return values: AC and Battery. Any kind of charging is sorted to AC.

5.2 Compass

Xamarin.Essentials.Compass provides its own low pass filter to deal with the jitter. However,

this feature is not available on iOS. Even if the low pass filter is implemented, it will be ignored

by the compiler of iOS. Fortunately, the reading of the compass does not undergo much jitter.

If a filter has to be implemented anyway, a filter is introduced in the thesis written by Qin Lu.

5.3 Flashlight

On iPhone that installed iOS 11 or above, and iPhone that supports 3D-touch and installed iOS

10, the brightness of flashlight can be adjusted. Unfortunately, this feature is not taken into

consideration by Xamarin.Essentials. It is not possible to set the brightness with this class.

5.4 Launcher

Any application that the launcher intends to open for the first time requires permission from the

user. After first permission, the application is free to open the target application.

When the launcher encounters a URL, for example, “http://www.google.com”, iOS devices

throws an exception. Whereas the default browser application is launched on other platforms.

34

6 Conclusion
In this thesis, half of the APIs of the package Xamarin.Essentials are supported with detailed

introductions, as well as implementation approaches and features on different platforms. The

performance of most APIs is tested. The untested ones result from the lack of test equipment.

In addition, a video player is implemented. Meanwhile, a program for testing, as well as for

demonstration is provided.

The main functions of the APIs serve well on Android, iOS, and UWP platforms. Firstly, it

gives access to most sensors and various functions of the device. Secondly, cross platform

programming, which is one of the most important features of Xamarin, is fully demonstrated

through the investigation. Most codes are written in the main project once and they manage to

run on each platform. Therefore, It is safe to say that Xamarin.Essentials is a desirable choice

for cross platform development and is able to reduce the workload of developers to a large

extent.

On the other hand, this package has its drawbacks, as well. Firstly, it does not provide internal

solutions for some functions. For instance, the API for maps solely enables the application to

jump to the default map application. It could have been more favorable if the map could be

displayed inside the application. Secondly, some functions are somehow redundant. For

example, FileSystemHelper provides extremely similar methods to some methods in the

package System.IO. Moreover, the former methods are not as powerful as the latter. Thirdly,

this package lacks APIs for some fundamental functions. For example, the video player

implemented in section 4.16. As a result, a number of implementing classes in each platform

project have to be written in order to invoke the default video player.

35

7 Outlook
For further research on Xamarin.Essentials, solving the following remaining problems could

serve as a start.

Firstly, as explained in section 2.4, the author does not possess a Windows phone. As a result,

some of the APIs cannot be tested.

Secondly, some of the APIs involve multithreading or asynchronous methods. The program is

written on the basis of single threading. In other words, the asynchronous methods are viewed

as ordinary methods. The possibility of multithreading can be investigated. Asynchronous

methods have caused considerable problems in this project. For example, the complicated logic

described in section 4.12.1 and 4.12.2 results from an asynchronous method.

Thirdly, the package Xamarin.Essentials is a fairly new tool and is still updating. During the

process of this project, a few new APIs are intergraded into the package, such as unit converters.

It is recommended that further researchers refer to the official documentation frequently.

36

8 Reference

[1] J. Montemagno, C. Dunn, N. Malcolm, C. Petzold and B. Umbaugh,

"Xamarin.Essentials - Xamarin | Microsoft Docs," 22 April 2019. [Online]. Available:

https://docs.microsoft.com/en-us/xamarin/essentials/. [Accessed 5 May 2019].

[2] G. Warren and T. G. Lee, "Overview of Visual Studio | Microsoft Docs," 19 March 2019.

[Online]. Available: https://docs.microsoft.com/en-us/visualstudio/get-started/visual-

studio-ide/. [Accessed 5 May 2019].

[3] Microsoft, "Compare Visual Studio Product Offerings | Visual Studio," 2019. [Online].

Available: https://visualstudio.microsoft.com/vs/compare/. [Accessed 05 May 2019].

[4] B. Wagner, N. Schonning, M. Wenzel, L. Latham and P. Onderka, "A Tour of C# - C#

Guide | Microsoft Docs," 5 April 2019. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/. [Accessed 5 May 2019].

[5] C. Dunn, D. Britch, R. Anderson and A. Burns, "Introduction to Mobile Development -

Xamarin | Microsoft Docs," 28 March 2017. [Online]. Available:

https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/introduction-to-

mobile-development. [Accessed 09 May 2019].

[6] Apple, "Xcode - Apple Developer," [Online]. Available:

https://developer.apple.com/xcode/. [Accessed 10 May 2019].

[7] Apple, "Xcode on the Mac App Store," [Online]. Available:

https://itunes.apple.com/us/app/xcode/id497799835/. [Accessed 10 May 2019].

[8] Microsoft, "Downloads | IDE, Code, & Team Foundation Server | Visual Studio,"

[Online]. Available: https://visualstudio.microsoft.com/downloads/. [Accessed 29 May

2019].

[9] C. Dunn, J. Johnson and D. Britch, "Installing Xamarin in Visual Studio 2019 - Xamarin

| Microsoft Docs," 28 August 2018. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/get-started/installation/windows. [Accessed 9 May 2019].

[10] C. Dunn, J. Montemagno, D. Britch, C. Petzold, M. Dickhaus and A. Chebukin, "Get

Started with Xamarin.Essentials - Xamarin | Microsoft Docs," 4 November 2018.

[Online]. Available: https://docs.microsoft.com/en-us/xamarin/essentials/get-started/.

[Accessed 9 May 2019].

37

[11] Microsoft, "Installing Xamarin.iOS on Windows - Xamarin | Microsoft Docs," 16 April

2018. [Online]. Available: https://docs.microsoft.com/en-us/xamarin/ios/get-

started/installation/windows/?pivots=win-vs2017. [Accessed 13 May 2019].

[12] L. O'Brien, C. Dunn, D. Britch, B. Umbaugh and T. Opgenorth, "Pair to Mac for

Xamarin.iOS Development - Xamarin | Microsoft Docs," 29 May 2018. [Online].

Available: https://docs.microsoft.com/en-us/xamarin/ios/get-

started/installation/windows/connecting-to-mac/index. [Accessed 24 May 2019].

[13] J. Montemagno, C. Dunn, C. Petzold, B. Umbaugh and M. Leibowitz,

"Xamarin.Essentials: Magnetometer - Xamarin | Microsoft Docs," 04 November 2018.

[Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/magnetometer/. [Accessed 17 May 2019].

[14] J. Montemagno, C. Dunn and C. Petzold, "Xamarin.Essentials: OrientationSensor -

Xamarin | Microsoft Docs," 4 November 2018. [Online]. Available:

https://docs.microsoft.com/en-us/xamarin/essentials/orientation-sensor/. [Accessed 18

May 2019].

[15] J. Montemagno, C. Dunn and C. Petzold, "Xamarin.Essentials: MainThread - Xamarin |

Microsoft Docs," 4 November 2018. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/main-thread/. [Accessed 17 May 2019].

[16] Microsoft, "MainThread.BeginInvokeOnMainThread(Action) Method

(Xamarin.Essentials) | Microsoft Docs," [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/xamarin.essentials.mainthread.begininvokeonmainthread?view=xamarin-

essentials. [Accessed 26 May 2019].

[17] J. Montemagno and C. Dunn, "Xamarin.Essentials Map - Xamarin | Microsoft Docs," 2

April 2019. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/maps. [Accessed 18 May 2019].

[18] Microsoft, "Map Class (Xamarin.Essentials) | Microsoft Docs," [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.map/. [Accessed 25 May

2019].

[19] Microsoft, "NavigationMode Enum (Xamarin.Essentials) | Microsoft Docs," [Online].

Available: https://docs.microsoft.com/en-

us/dotnet/api/xamarin.essentials.navigationmode/. [Accessed 18 May 2019].

[20] J. Montemagno, C. Dunn, D. P, B. Umbaugh and M. Leibowitz, "Xamarin.Essentials

Open Browser - Xamarin | Microsoft Docs," 2 April 2019. [Online]. Available:

38

https://docs.microsoft.com/en-us/xamarin/essentials/open-browser/. [Accessed 18 May

2019].

[21] Microsoft, "Browser Class (Xamarin.Essentials) | Microsoft Docs," [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.browser/. [Accessed 26

May 2019].

[22] J. L. Blanco, "A tutorial on SE(3) transformation parameterizations," 2019.

[23] J. Montemagno, C. Dunn, domagojmedo, B. Umbaugh and M. Leibowitz,

"Xamarin.Essentials: Phone Dialer - Xamarin | Microsoft Docs," 4 November 2018.

[Online]. Available: https://docs.microsoft.com/en-us/xamarin/essentials/phone-dialer/.

[Accessed 19 May 2019].

[24] J. Montemagno and L. O'Brien, "Xamarin.Essentials Platform Extensions - Xamarin |

Microsoft Docs," 13 March 2019. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/platform-extensions/. [Accessed 19 May 2019].

[25] J. Dick and J. Montemagno, "Essentials/Xamarin.Essentials/Types/PlatformExtensions

at master · xamarin/Essentials," 15 March 2019. [Online]. Available:

https://github.com/xamarin/Essentials/tree/master/Xamarin.Essentials/Types/PlatformE

xtensions/. [Accessed 19 May 2019].

[26] J. Montemagno, L. McCarthy, C. Dunn, N. Schonning, M. Leibowitz and C. Petzold,

"Xamarin.Essentials: Preferences - Xamarin | Microsoft Docs," 15 January 2019.

[Online]. Available: https://docs.microsoft.com/en-us/xamarin/essentials/preferences/.

[Accessed 19 May 2019].

[27] Microsoft, "Preferences Class (Xamarin.Essentials) | Microsoft Docs," [Online].

Available: https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.preferences/.

[Accessed 27 May 2019].

[28] J. Montemagno, C. Dunn, T. Brobbel, M. Leibowitz, J. Alt, C. Petzold and artemious7,

"Xamarin.Essentials: Secure Storage - Xamarin | Microsoft Docs," 2 April 2019.

[Online]. Available: https://docs.microsoft.com/en-us/xamarin/essentials/secure-

storage/. [Accessed 19 May 2019].

[29] J. Montemagno and C. Dunn, "Xamarin.Essentials: Share - Xamarin | Microsoft Docs,"

2 April 2019. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/share/. [Accessed 19 May 2019].

[30] Microsoft, "ShareTextRequest Class (Xamarin.Essentials) | Microsoft Docs," [Online].

Available: https://docs.microsoft.com/en-

us/dotnet/api/xamarin.essentials.sharetextrequest/. [Accessed 27 May 2019].

39

[31] J. Montemagno, C. Dunn, B. Umbaugh and M. Leibowitz, "Xamarin.Essentials: SMS -

Xamarin | Microsoft Docs," 4 November 2018. [Online]. Available:

https://docs.microsoft.com/en-us/xamarin/essentials/sms/. [Accessed 19 May 2019].

[32] Microsoft, "SmsMessage Class (Xamarin.Essentials) | Microsoft Docs," [Online].

Available: https://docs.microsoft.com/en-us/dotnet/api/xamarin.essentials.smsmessage/.

[Accessed 27 May 2019].

[33] J. Montemagno, K. C. Dunn, B. Umbaugh and M. Leibowitz, "Xamarin.Essentials: Text-

to-Speech - Xamarin | Microsoft Docs," 4 November 2018. [Online]. Available:

https://docs.microsoft.com/en-us/xamarin/essentials/text-to-speech/. [Accessed 19 May

2019].

[34] J. Montemagno, "Xamarin.Essentials Unit Converters - Xamarin | Microsoft Docs," 13

March 2019. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/unit-converters/. [Accessed 20 May 2019].

[35] J. Montemagno, C. Dunn, B. Umbaugh and M. Leibowitz, "Xamarin.Essentials: Version

Tracking - Xamarin | Microsoft Docs," 4 November 2018. [Online]. Available:

https://docs.microsoft.com/en-us/xamarin/essentials/version-tracking/. [Accessed 20

May 2019].

[36] X. V. -. X. |. M. Docs, "Xamarin.Essentials: Vibration - Xamarin | Microsoft Docs," 4

November 2018. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/essentials/vibrate/. [Accessed 20 May 2019].

[37] D. Britch, C. Dunn and C. Petzold, "Creating the platform video players - Xamarin |

Microsoft Docs," 12 February 2018. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/xamarin-forms/app-fundamentals/custom-renderer/video-player/player-

creation/. [Accessed 23 May 2019].

[38] D. Britch, C. Dunn, C. Petzold and B. Umbaugh, "Playing a Web video - Xamarin |

Microsoft Docs," 12 February 2018. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/xamarin-forms/app-fundamentals/custom-renderer/video-player/web-

videos/. [Accessed 23 May 2019].

[39] D. Britch, C. Dunn and C. Petzold, "Accessing the device's video library - Xamarin |

Microsoft Docs," 12 February 2018. [Online]. Available: https://docs.microsoft.com/en-

us/xamarin/xamarin-forms/app-fundamentals/custom-renderer/video-player/accessing-

library/. [Accessed 23 May 2019].

[40] D. Britch, C. Dunn, J. S. Smith, C. Petzold and B. Umbaugh, "Loading application

resource videos - Xamarin | Microsoft Docs," 12 February 2018. [Online]. Available:

40

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/custom-

renderer/video-player/loading-resources/. [Accessed 23 May 2019].

[41] Microsoft, "BatteryPowerSource Enum (Xamarin.Essentials) | Microsoft Docs,"

[Online]. Available: https://docs.microsoft.com/en-

us/dotnet/api/xamarin.essentials.batterypowersource/. [Accessed 28 May 2019].

41

9 List of images
Figure 3.1: Selecting Workloads .. 4

Figure 3.2: Selecting Components ... 4

Figure 3.3: Enabling Remote Login on Mac .. 5

Figure 3.4: Dialog Requiring Password ... 5

Figure 4.1: Comparison of Magnetometer ... 9

Figure 4.2: Map on Android ... 11

Figure 4.3: Map on iOS .. 11

Figure 4.4: Map on UWP ... 11

Figure 4.5: Browser on Android .. 12

Figure 4.6: Browser on iOS.. 12

Figure 4.7: Browser on UWP ... 13

Figure 4.8: Comparison of Orientation Sensor .. 16

Figure 4.9: Comparison of Phone Dialer ... 17

Figure 4.10: Comparison of Platform Extensions .. 20

Figure 4.11: Comparison of Preferences .. 21

Figure 4.12: Comparison of Secure Storage .. 22

Figure 4.13: Comparison of Share ... 23

Figure 4.14: SMS on Android .. 24

Figure 4.15: SMS on iOS ... 24

Figure 4.16: Comparison of Text to Speech .. 27

Figure 4.17: Comparison of Unit Converters ... 27

Figure 4.18: Comparison of Version Tracking .. 28

Figure 4.19: Comparison of Vibration ... 29

Figure 4.20: Comparison of Video Player ... 32

42

10 List of Listings
Listing 4.1: Starting and Stopping Magnetometer ... 7

Listing 4.2: Handling Data from Magnetometer .. 8

Listing 4.3: Code Block for Main Thread .. 9

Listing 4.4: Implementing Map .. 10

Listing 4.5: Implementing Orientation Sensor ... 14

Listing 4.6: Formulas for Conversion between Quaternions and Euler Angles....................... 15

Listing 4.7: Relation between Euler Angles and the attributes .. 15

Listing 4.8: IPlatformaExtensions.cs ... 18

Listing 4.9: PlatformExtensions.cs in iOS Project ... 18

Listing 4.10: Referring to the Implemented Method .. 19

Listing 4.11: Implementing Preferences .. 21

Listing 4.12: Sliders for Volume and Pitch .. 24

Listing 4.13: Pickers and Methods for Locale ... 25

Listing 4.14: Implementing Text to Speech ... 26

Listing 4.15: Implementing Video Player in Demo Page .. 31

