
i

Zusammenfassung der Arbeit

Abstract of Thesis

Fachbereich:

Department:

Studiengang:

University course:

Thema:

Subject:

Zusammenfassung:

Abstract :

Verfasser:

Author:

Betreuender Professor/in: :

Attending Professor:

WS / SS :

Investigation and Test of Xamarin.Forms Client to Client

communication methods

With the rapid development of mobile internet technology and the popularity of smart

mobile terminals, live chatting with mobile devices based on different platforms has

become an indispensable part of people’s lives. Cross-platform development is

becoming a trend. Xamarin.Forms provide a solution for cross-platform programming

which is integrated in Visual Studio 2017. The aim of this thesis is to create a real-time

communication application between Android, IOS, windows devices and raspberry pi

3 by using Xamarin.Forms. To reach the final goal, we select MQTT protocol which is

a lightweight agent-based publish/subscribe messaging protocol to realize the

communication function for its simple, lightweight nature and is well suited for use on

cross-platform mobile devices. This thesis will introduce the basic knowledge of Visual

Studio 2017, Xamarin.Forms, MQTT protocol and the programming language(C#).

With the analysis and study of the format characteristics of the MQTT protocol and

how the protocol works, this paper designed and implemented a instant messaging

application for cross-platform mobile terminals which includes Android, IOS, UWP and

raspberry PI, and this application achieved log/ register, instant message, state

rendering function.

Electrical Engineering and Computer Science

Information Technology

Zun Yuan

Prof. Dr. Jörg Bayerlein

SS <2019>

ii

Table of Contents

Abstract of Thesis ... i

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Goal ... 2

1.3 Thesis structure ... 2

Chapter 2 Basic Knowledge .. 3

2.1 Visual Studio .. 3

2.2 Xamarin.Forms .. 3

2.3 SQLite .. 4

2.4 Raspberry Pi .. 5

Chapter 3 Installation and Configuration ... 7

3.1 Visual Studio Installation .. 7

3.2 Emulator Configuration .. 9

3.2.1 UWP Emulator Configuration ... 9

3.2.2 Android Emulator Configuration ... 10

3.3 IOS Compilation and Connection ... 11

Chapter 4 MQTT protocol .. 13

4.1 Introduction and Working Principle ... 13

4.2 Publish and Subscribe models ... 14

4.3 Quality of Service ... 15

4.4 MQTTnet ... 17

Chapter 5 Project Programming ... 18

5.1 Directory Description .. 18

5.2 Create a Project and Import the Class Library .. 19

5.3 Source Code Description ... 20

5.3.1 Local Storage API .. 21

iii

5.3.2 Pop-up Box API ... 21

5.3.3 Interface Design .. 22

5.3.4 Client ... 26

5.3.5 MQTT Server ... 29

5.4 SQLite Programming ... 31

5.4.1 Building Library .. 32

5.4.2 Additions, Deletions, Changes, etc .. 33

5.4.3 File Call ... 34

5.5 Software Operation Guide.. 35

Chapter 6 Summary ... 38

6.1 Conclusion and Evaluation ... 38

6.2 Outlook .. 39

Acknowledgment ... 41

Appendix A – List of figures .. 42

Appendix B – List of code ... 44

Appendix C – Content of USB Striker ... 45

Bibliography ... 46

1

Chapter 1 Introduction

1.1 Motivation

With the development of mobile internet technology, instant messaging has become

one of the most commonly used communication tools. It’s necessary for people to

exchange message on different platform.

The implementation of the mobile instant messaging system mainly uses the XMPP

protocol and the SIMPLE protocol except for a few proprietary protocols in current

market. The XMPP protocol is an XML-based open instant messaging protocol which

is mature, secure and scalable, but it has the disadvantages of complicated protocol,

repeated message forwarding, power consumption and fee flow [1]. This is a design

and implementation of a high energy consumption agreement. The SIMPLE protocol

is extended on the basis of the SIP protocol [2] and is one of the mainstream instant

messaging protocols. The mature audio and video standard support various types of

instant messaging, but it also has problems such as large traffic consumption and

complicated expansion. These two protocols are not designed with the characteristics

of the cross-platform terminals, so they do not perform well in practical applications.

MQTT is a protocol designed for devices with limited computing power and working in

low-bandwidth and unreliable networks. Its characteristic of small transmission,

consuming less power, reducing network traffic and minimizing data packets give us

a suitable option for cross-platform instant messaging system on mobile devices.

2

1.2 Goal

The former research is on developing a communication method via email exchange

and data base connection, but these way does not work fast enough. MQTT

(Message Queuing Telemetry), a lightweight messaging/delivery-based messaging

protocol, is mobile ideal for end applications. This thesis is to introduce the basic

content and features of MQTT and test it on UWP local machine, Raspberry, Android

and iPhone. Besides, it is to use mobile phones as remote control for control

systems. As final App a communication App whose functions include register/login,

instant messaging and status display should be the result.

1.3 Thesis structure

This thesis is divided into six parts to help the reader understand the research and

content to be expressed throughout the paper.

The first chapter is to introduce the motivation and purpose of doing this research.

In chapter 2 is to presents the basic knowledge of Visual Studio, Xamarin, SQLite and

Rasberry Pi so that readers can understand the research and content afterwards better.

Then in chapter 3, there is the guide of Visual Studio installation and the emulator

configuration of different platform.

Chapter 4 aims to introduce MQTT protocol which is most critical in this paper. It is to

help readers to understand the content and logic of MQTT protocol and pave the way

for the practical application of MQTT protocol in instant messaging application in next

chapter

Chapter 5 will specifically introduce how each part of the program is constructed and

its role.

Finally, in the chapter the result and conclusion are summarized and the limitation and

possibilities are demonstrated. After that there is a outlook for future research.

3

Chapter 2 Basic Knowledge

This chapter is mainly introducing the basic knowledge of the integrated development

environment, cross-platform application development framework, database and

hardware in order to provide a primary impression of the technology and let the

reader understand what the thesis is writing about better.

2.1 Visual Studio

Microsoft Visual Studio is an integrated development environment created by

Microsoft which is used to develop computer programs, as well as websites, web

apps, web services and mobile apps. Visual Studio supports 36 different

programming languages such as C, C++, JavaScript, HTML and Python. Besides,

the Community edition is available free of charge which is the most basic edition of

Visual Studio. [3] The Visual Studio version used in this paper is 2017.

2.2 Xamarin.Forms

In our inherent thinking, we believe it’s a reliable and conservative way to hire

developers who has specific skills to be responsible for the part where they are good

at. For example, some developers use Objective-C to develop IOS version, some

developers use Java to develop Android version and some developers use C# to

develop windows version. However, if we develop a cross-platform in such way, it will

lead to a lot of troubles and mistakes such as inconsistence and non-compatibility.

This is a huge loss and waste of resources and time. To solve this kind of problem, a

cross-platform technology which called Xamarin is created as the key to productivity

4

and the old programming model which isolate IOS, Android and Windows is gradually

eliminated. [4]

Xamrin.Forms provides a complete cross-platform Ul product for .NET developers

and uses the C# in Visual Studio to build completely native Android, iOS and

universal windows platform applications [5].

Figure 2-1 Xamarin.Forms [7]

2.3 SQLite

SQLite is a process library which implements a self-contained, serverless, zero-

configuration and transactional SQL database engine [6]. SQLite is free for use for

any purposes such as private and business since the code for SQLite domain is in

the public domain.

Unlike most other SQL databases, SQLite is an embedded SQL database engine and

does not have a separate server process which enable it to directly read and write

ordinary disk files. Besides, SQLite is a compact library whose size may be less than

5

600KiB depending on the settings of target platform and compiler and it runs faster

when giving it more memory. SQLite perform quite good in a low memory

environment [6].

2.4 Raspberry Pi

Raspberry Pi is a mini computer for computer amateurs, teachers, students and

small companies. It is pre-installed with Linux system and its size is as big as a credit

card. It is equipped with an ARM architecture processor and its computing

performance is similar to a smartphone.

Figure 2-2 Raspberry Pi 3 Model B [8]

The version of Raspberry Pi using in this thesis is Raspberry Pi 3 Model B+ and it is

the latest revision of third-generation single-board computer which contains 1.4Hz

6

64-bit quad-core processor, dual-band wireless LAN, Bluetooth 4.2/BLE, faster

Ethernet and Power-over-Ethernet support [8]. All in all, this product is the perfect

foundation for building professional applications or interesting projects.

If we want to connect to raspberry, we could use the help of IoT（internet of things）.

If IoT system has already been installed on the raspberry, we can connect to the IP

address of the raspberry its own and make the preparation for next work.

7

Chapter 3 Installation and Configuration

Microsoft Visual Studio 2017 which is integrated with Xamarin.Forms is the key tool

to develop the cross-platform program in this thesis. This chapter mainly introduces

the installation of the Visual Studio 2017 and the configuration in each emulator.

3.1 Visual Studio Installation

The first step we should do is downloading the Visual Studio Installer and use it to

install the Visual Studio 2017 which is available in the Microsoft Visual Studio

webpage [9]. The following pictures show the version and the components we need

to be installed.

Figure 3-1 Version of Visual Studio

Figure 3-2 Installed Component in Visual Studio 2017 1

8

Figure 3-3 Installed Component in Visual Studio 2017 2

Figure 3-4 Installed Component in Visual Studio 2017 3

Figure 3-1-5 Installation Details of Visual Studio 2017

9

Then the Visual Studio 2017 can be used to develop cross-platform software when

creating the project as “Mobile App (Xamarin.Forms)” in “Cross-Platform” section in

“Visual C#”.

3.2 Emulator Configuration

Suitable and powerful emulators helps us to verify our application at lightning speed

depending on its powerful simulation to imitate the actual situation through various

device sensors. The X86 emulator stars and runs at almost the speed of a physical

device, making it easy to debug graphics-intensive, processor-intensive applications

[10].

3.2.1 UWP Emulator Configuration

Before starting to develop UWP applications, we need to find “Settings” – “Updates

and Security” – “For developers” on Win 10 PC, first switch the model under “Use

developer features” to “Develop mode”, and then turn “Device Portal” status is changed

to “On”.

Figure 3-5 UWP Targeting SDK

In this thesis, we set target version as the current latest version of Windows 10, version

1809(10.0; Build 17763) and use Windows 10, version 1803(10.0; Build 17134) as the

10

min version.

3.2.2 Android Emulator Configuration

Win10 system has a standalone version of the Android simulator Visual Studio

Emulator for Android. I will give detailed introduction about this emulator settings and

how to use it.

First, turn on Hyper-V virtualization technology which in the “Start or Shut Down

Windows Features” in “Uninstall a Program” in “Control Panel. Then download the

Visual Studio Emulator for Android on the website:

https://visualstudio.microsoft.com/vs/msft-android-emulator/ [22].

Figure 3-6 Visual Studio Android Emulator

After downloading, it is a 40M vs_emulatorsetup.exe file, which does not contain the

file of the Android emulator. The x86 file of API 19 (Android 4.4) will be downloaded

online by default. We can also download other APIs separately. In addition, Visual

Studio Emulator for Android is not dependent on Visual Studio, which means that it can

https://visualstudio.microsoft.com/vs/msft-android-emulator/

11

be installed separately. Android Studio uses Android Debug Bridge as a bridge to

connect Visual Studio Emulator for Android.

Then look into Android SDK manager, there is a list of Android platforms and I choose

the Android 8.1-Oreo and click apply changes. Now I can run the application of Android

version in my Android emulator.

Figure 3-7 Android SDK Manager Platform

3.3 IOS Compilation and Connection

We need a Mac computer and Xcode installed on it to compile the IOS version of the

software. If there is difficult on compiling on a real mac computer, you can try to install

a virtual machine and install the Mac system on it to compile the software.

We need to make sure that this computer has already installed the Xcode and Visual

12

Studio 2017 for Mac, then we can start connecting. First is to open the Info.plist in the

Visual Studio to set the application name and bundle identifier. After that confirm and

choose the Mac computer we are going to use.

Figure 3-8 Pair to Mac

In the end, we just need to run the application of IOS by clicking the run button.

Figure 3-9 Connect Real Device

13

Chapter 4 MQTT protocol

4.1 Introduction and Working Principle

The MQTT protocol (Message Queuing Telemetry Transport) was proposed by IBM in

1999 and the latest version is 5.0 [11]. MQTT is a message protocol based on binary

message-based publish/subscribe programming mode. Nowadays is has become the

OASIS specification. Because the specification is very simple, the original purpose of

the design is to provide extremely limited memory devices and unreliable

communication with low network bandwidth. Suitable for IoT scenarios that require low

power consumption and limited network bandwidth [12].

Figure 4-1 MQTT Protocol Stack [13]

The MQTT protocol provides one-to-many message publishing, which can decouple

application coupling and reduce information redundancy. The protocol requires a client

and a server, and there are three main identities in the protocol: Publisher, Broker,

Server, and Subscriber. Among them, the publisher and subscriber of the message are

both clients, the message proxy is the server, and the message publisher can be the

subscriber at the same time, which realizes the decoupling between the producer and

the consumer.

14

4.2 Publish and Subscribe models

The MQTT protocol defines two entity types in the network: a message broker and

some clients. A proxy is a sever that receives all messages from the client and routes

them to the relevant target client. A client is anything that can interact with an agent to

send and receive messages. The client can be a live IoT sensor or an application that

processes IoT data in the data center. First the client connects to the proxy and it can

subscribe to any message “subject” in the agent. Then the client publishes messages

within a subject by sending messages and topics to the agent. At last the agent

forwards the message to all clients that subscribe to the topics [12] and we can see

the procedure in the following picture.

Figure 4-2 MQTT Publish and Subscribe Model for IoT Sensors [12]

The publish/subscribe model implements decoupling between publishers and

subscribers and can be distinguished from multiple dimensions. The first one is spatial

decoupling which means publishers and subscribers do not need to knew each other’s

existence (such as the other party’s IP address and port). The second decoupling is

time decoupling which means publishers and subscribers do not need to run at the

same time. The third one is synchronous decoupling which means the operation of

both components is not suspended during the release or reception. In general, the

15

publish/subscribe model decouples publishers and subscribers from messages, and

by filtering the messages, only certain clients can receive the corresponding messages.

Decoupling consists of three dimensions: space, time and synchronization [14].

4.3 Quality of Service

MQTT supports three QoS levels:

QoS 0: “At most once”, message publishing relies entirely on the underlying TCP/IP

network. Messages distributed may be lost or duplicated [15]. For example, this level

can be used for environmental sensor data and a single data loss does not matter, as

there will be a second transmission in the near future.

Figure 4-3 QoS 0 [16]

QoS 1:” At least once” to ensure that the message can arrive, but the message may

be repeated [15].

16

Figure 4-4 QoS 1 [16]

QoS 2:” Only once”, ensuring that the message arrives only once [15]. For example,

the level can be used in a billing system where incorrect or lost messages can result

in incorrect charges.

Figure 4-5 QoS 2 [16]

QoS is a major feature of MQTT. It makes the exchange of information in an unstable

network environment much simpler, because the protocol controls the relay and

guarantees the delivery of information, ignoring the unreliable underlying interaction.

Moreover, it authorizes the client to determine the QoS level based on the client’s

program logic and network reliability.

17

4.4 MQTTnet

MQTTnet is a high-performance .NET open source library based on MQTT

communication that supports both MQTT server and client [20]. And the author is also

updated, currently supporting the new version of the .NET core, which is why MQTTnet

is chosen. MQTTnet is not the most downloaded .NET MQTT open source library in

Github, others are MqttDotNet, nMQTT, M2MQTT, etc.

18

Chapter 5 Project Programming

In this chapter, I will start with the catalog. Then explain how to create a project and

import important class libraries. After that, I will analyze the code and explain the role

of each part of the code, the use of the database and how to build MQTT server. Finally,

I will provide the guide to run the program in this paper.

5.1 Directory Description

Figure 5-1 Source Code Directory 1

Forder “AppChat” contains all the source code and forder “packages” contains all the

used d11.

Figure 5-2 Source Code Directory 2

The folder “Chat.Android” defines the Android interface while the folder “Chat.IOS” and

19

“Chat.Uwp” respectively defines the IOS and Uwp interfaces. The folder “Chat.Model”

includes the entity class definition used by the program. Besides, the folder

“ Content.Core” contains the common interface and core logic. The folder

“MqttNetServer” contains the sever source code which also includes http and

application programming interface（API）.

5.2 Create a Project and Import the Class Library

Here we use Visual Studio 2017 to create a project which is supported by

Xamarin.Forms and add projects which include a server and clients. The server project

template selects the latest .NET Core console application and client projects select the

traditional form application.

Figure 5-3 Create a New Project

Then in the solution right click and select “Manage NuGet Packages for Solutions then

search for “MQTTnet” under “Browse” tab, install MQTTnet library for both server

project and client project, the latest stable version is 2.8.5.

20

Figure 5-4 Install MQTTnet

5.3 Source Code Description

MQTTnet is a high-performance .NET open source library based on MQTT

communication that supports both MQTT server and client. The author also updates,

currently supporting the new version of .NET core, which is why MQTTnet is chosen.

MQTTnet is not the most download .NET MQTT open source library in Github, others

are MqttDotNet, nMQTT, M2MQTT, etc.

Client simple demo can refer to the official documentation:

https://github.com/chkr1011/MQTTnet/wiki/Client [16]

Simple communication sample program can refer to github:

https://github.com/landbroken/MQTTLearning [17]

https://github.com/chkr1011/MQTTnet/wiki/Client
https://github.com/landbroken/MQTTLearning

21

5.3.1 Local Storage API

Code 5-1 Local Storage API

IUserPreferences in Content.Core is to establish user configuration information local

storage interface. Besides, UserPreferencesAndroid, UserPreferencesIOS and

UserPreferencesUwp all inherited it and implemented this interface on Android, IOS

and UWP respectively.

5.3.2 Pop-up Box API

22

Code 5-2 Pop-up Box API

IToast is the pop-up prompt box interface and Toast_Uwp, Toast_IOS and

Toast_Android implement the interfaces on UWP, IOS and Android separately.

5.3.3 Interface Design

The language to design the interfaces in this paper is XAML (Extensible Application

Markup Language) which is a markup language for instantiating .NET objects. It

simplifies the process of creating UI for .NET framework applications, making

programming interface programming simpler and clearer. XAML represents the

instantiation of an object directly in a specific set of fallback types defined in the

assembly. Each element in a XAML file represents a class in.NET, and each property

in a XAML file represents a property, method, or event in a .NET class [18]. And it is

very easy to start a xaml project and start to program.

23

Figure 5-5 Create a WPF File

Most general global temporary configuration of the program is stored in App.Xaml.cs.

Login.xaml is the login interface file which provides the inputs for the account number

and password and an entry for registration.

Figure 5-6 Login Interface on UWP

Register.xaml is the registration interface file which help the user to create their

account and input and store their account number and password. When they create

their account in this page successfully, they can login in and start to chat with others.

24

Figure 5-7 Register Interface on UWP

MainPage.xaml is the friend list interface file which help the user to check other user

in this software and whether they are online or not.

Figure 5-8 Main Page Interface on Android

ChatPage.xaml provides a page file for the chat interface which can allow the user to

send and receive message immediately after they choose the user in their friend list.

25

Figure 5-9 Chat Page Interface on Android 1

Figure 5-10 Chat Page Interface on Android 2

FrmMqttServer.cs provides the main server interface which let the user to change the

IP address and ports. Besides it can also give the button to make the server run or

stop and allow the user to check the records in the server

26

Figure 5-11 Server Interface

5.3.4 Client

MQTT is different from HTTP, which is based on request/response. The server cannot

send data directly to the client. The MQTT is based on the publish/subscribe mode,

and all clients remain connected to the server. Clients subscribe to the server for

messages, others send messages or topics to the server and the server matches the

subscribed and published topic or messages, then forward the message to Match the

passed client.

HttpClientHelper.cs is the http client helper class which provides http request function

and encapsulates registration, login, message sending, online, offline and get buddy

list function.

Code 5-3 Encapsulate Registration Function

27

The code above is an example to encapsulate registration.

MqttApplicationMessageReceivedHandler is the Mqtt message receiving processing

class which providing chat message, processing function of online and offline. And it

also the class to subscribe topics and all topic subscriptions are defined here.

Code 5-4 Deal with Received Message

In ChatPage.xaml, there will be more specific action about dealing with the

messages.

Code 5-5 Subscribe for Received Message

28

This is the event subscription for the received message.

Code 5-6 Load History Message

LoadMsg is used to load history message.

Code 5-7 Send Message

This part is the route of the message being sent. The message will be sent to the

mqttserver. After that the message will be sent to http server and this server will save

the message into the SQLite.

29

MQTTHelper.cs is the mqtt help class provides initialization of MQTT client (including

subscription related topic function), send message, registration, go online, offline and

message push function. MqttMsgSourceConverter.cs is providing a conversion tool for

providing Xaml pages. It provides color location and online offline mark conversion.

Code 5-8 Initialize MQTT Client 1

Code 5-9 Initialize MQTT Client 2

5.3.5 MQTT Server

The server includes two functions, one is the MQTT service function, which provides

the subscription and release functions of the message; the other function is the web

API interface function, which provides functions such as user registration, login and

30

extraction of historical messages. When the client sends data to the server through the

http request, it can implement related functions such as registration and login.

MQTT is a link protocol that specifies how data bytes are organized and transmitted

over a TCP/IP network [21]. But in fact, developers don't need to link to the specifics

of this link protocol. I only need to know that each message has a command and data

payload. This command defines the message type (such as a CONNECT message or

a SUBSCRIBE message). All MQTT libraries and tools provide a basic way to handle

these messages directly and can automatically populate some of the necessary fields

such as messages and client IDs.

In MQTT part, I have chosen the MQTTnet middleware which is very easy to use and

there is open source in the website: https://github.com/chkr1011/MQTTnet [20].

The "private async void MqttServer()" method in the “FrmMqttServer.cs” file is to

initialize the MQTT server.

Code 5-10 Initialize MQTT Server

https://github.com/chkr1011/MQTTnet

31

I customized an HttpListener service. Its listening port is “7778” and the user can only

pass http://ip:port/action method to access.

The server supports checking client connections, disconnection and receiving

messages from clients.

Code 5-11 Process of Web API

The specific processing logic and process of this web API are in the class

RequestHelper.

5.4 SQLite Programming

There are some reasons let me to choose SQLite to store data in this program, First

is that SQLite is free and no copyright restriction where SQLite claims itself as the

most widely deployed and used database engine [6]. Second reason is SQLite is

fast, even 35% faster than the file system [19]. The last one is light weight which

make us use SQLite generally only need to bring a dynamic library of it and we can

enjoy its full functionality.

http://ip:port/action

32

5.4.1 Building Library

Code 5-12 Rebuild Library

Code 5-13 Create a New User Information Table

Code 5-14 Create a New Message Table

Code 5-15 Create a New Realationship Table

“InitDbHelper.cs” is used when need to rebuild the library for the first time or later.

“public void InitDb(string dbPath)” is used to create a new SQLite database file (the

existing file will be deleted and rebuild again). “public void CreateUserInfoTable()” is

used to create a user information table. “public void CreateMessageTable()” is used to

33

create a message table. “public void CreateRelationshipTable()” is used to establish a

friend relationship table.

5.4.2 Additions, Deletions, Changes, etc

“SQLiteHelper.cs” contains an access class for operating SQLite data and provides

basic methods such as adding, deleting and updating.

Code 5-16 Return the Data in the First Column of the First Row

For example, “ExecuteScalar” in the picture return the data in the first column of the

first row after executing the SQL statement. Other like “ExecuteNonQuery” returns the

number of rows affected after executing the SQL statement. “ExecuteReader” returns

the DbDataReader object returned after executing the SQL statement.

“ExecuteDataTable” returns the dataset object returned after executing the SQL

statement. “ExecuteDataSet” returns the datatable object returned after executing the

SQL statement.

34

5.4.3 File Call

“RequestHelper.cs” provides read and write calls to SQLite files.

Code 5-17 Read and Write the SQLite File

The method “public void DispatchResources(ExecutingDispatch action)” internally

provides a write operation to the SQLite file, including storage of information such as

operating friend table, registration, online/offline, message and login.

35

5.5 Software Operation Guide

Step 1: Insert “ipconfig” in the Command Prompt to check the ip address

Figure 5-12 Check the IP Address

Step 2: Open the application “MqttNetServer” in “MqttNetServer\bin\Release”

Figure 5-13 Open the MqttNetServer Application

36

Step 3: Insert ip address in the input box for server address in “MqttNetServer” and

set a port for it. After that press the “start button” and now the server is running.

Figure 5-14 Insert IP Address and Port in Server

Step 4: Run the application on IOS/Android/UWP/Raspberry. Press “setting” button

and insert the ip address into “ServerIp” and set the port and api. After that press the

“Confirm”.

Figure 5-15 Insert IP Address and Port in Client

When we finish the abovementioned steps, we can register an account and login it to

use all function in the application in devices.

37

There are two tips to make sure the software can be operated successfully

First is that we would better run the application “MqttNetServer” as administrator. The

second is we would better close firewall in the terminal before we run the application

in some situations.

Figure 5-16 Close the Firewall

38

Chapter 6 Summary

6.1 Conclusion and Evaluation

The goal of this thesis is to check the possibility and limitations of communication

methods of Xamarin.Forms. Current research is based on a developed communication

method via email exchange and database connection. This method can realize

communication, but there still is a long delay in message transmission. Therefore, I

start trying a new communication method MQTT method which seem to may greatly

speed up the message transmission to develop a instant messaging application cross

the platforms on Visual Studio with the help of Xamarin.

The result of the research has shown that MQTT protocol can help achieving fast

instant message function. The publish/subscribe mode of MQTT protocol allows all

clients to stay connected to the server and implement one-to-one instant messaging.

MQTT protocol may show a slight delay in the message when the chat information is

too dense in the existing program structure. Taking QoS=2 as a example, A message

sent by the server to the client needs to be exchanged 4 times: the first time the server

sends “publish” to the client; The second time is the client sends “pubrec” to the

server; the third time is the server sends “pubrel” to the client; the fourth time is the

client sends “pubcomp” to the server. Besides, if there are 10 message which need to

be sent, then a total of 40 interactions are required. This may be the main reason for

the possible delay.

Xamarin.Forms has many obvious advantages, but it also has its drawbacks. Xamarin

is still in the evolutionary stage, bugs are normal and instability is understandable. We

must admit that things are not perfect. In this software development, I often encounter

Visual Studio hanging or self-flashback, failure of connecting emulator and the code

39

does not execute as expected. If trying a lot of methods, but the problem has not been

solved, restarting the environment and restarting the computer seems to be an

unexpected but very effective way.

6.2 Outlook

As for the thesis, the topic of my thesis is about to investigate and test of

Xamarin.Forms client to client communication methods. However, The current

implementation of instant messaging is only available on the LAN. An interface that

allow this instant messaging function to run on the public network is left in the program,

but more debugging and operations are required to run successfully. This program is

currently successfully tested and run on three platforms, UWP, Android and IOS, with

theory of running on the Raspberry Pi possible but not ye tested on a real machine for

time reasons.

About the possible delays in the MQTT protocol, In future research, researchers can

try to introduce the message transmission protocol of the opportunity version number

in the MQTT protocol which means the message is maintained by the version number

maintenance order. After the server message arrives, the server is only responsible for

the push notification. After the client receives the synchronization request, the server

sends msq continuously according to the version. The client tells the server the last

version number received. However, this is only a hypothesis and specific solution has

to be in real practice.

About the choice of instant messaging protocol, MQTT protocol is selected in this

project, but there are still other protocols that may be suitable for instant messaging.

At present, OPC UA (Unified Architecture) has great potential in instant messaging

application. Instant messaging services also involve many technical points, besides

40

client-to-client communication, there are multicast, real-time voice and video, etc.,

which can be added in future development. Different services need to be implemented

by different protocols. Like traditional communication protocols, of course, they can

also be compared and used. Subsequent experimenters can test and apply these

protocols in practical applications.

41

Acknowledgment

First and foremost, I would like to express my sincere gratitude and respect to my

supervisor Professor Bayerlain who provides me with all necessary facilities and

technical guidance. Thanks to his patient teach and continuous suggestion for my

project, I can finish it successfully.

Secondly, I want to appreciate sincerely to Professor Heeren who is my second

supervisor and gives evaluation and instruction about my project.

Thirdly, I also would like to thank Ms. Hanasova for her detailed guidance of how to

solve the problems in thesis writing.

In the end, I want to thank two other students under the guidance of the same

supervisor Lu Qing and Wang Yuxuan for their help on equipment and research.

42

Appendix A – List of figures

Figure 2-1 Xamarin.Forms [7].. 4

Figure 2-2 Raspberry Pi 3 Model B [8] .. 5

Figure 3-1 Version of Visual Studio ... 7

Figure 3-2 Installed Component in Visual Studio 2017 1 7

Figure 3-3 Installed Component in Visual Studio 2017 2 8

Figure 3-4 Installed Component in Visual Studio 2017 3 8

Figure 3-5 UWP Targeting SDK ... 9

Figure 3-6 Visual Studio Android Emulator .. 10

Figure 3-7 Android SDK Manager Platform ... 11

Figure 3-8 Pair to Mac ... 12

Figure 3-9 Connect Real Device ... 12

Figure 4-1 MQTT Protocol Stack [13] .. 13

Figure 4-2 MQTT Publish and Subscribe Model for IoT Sensors [12] 14

Figure 4-3 QoS 0 [16] .. 15

Figure 4-4 QoS 1 [16] .. 16

Figure 4-5 QoS 2 [16] .. 16

Figure 5-1 Source Code Directory 1 .. 18

Figure 5-2 Source Code Directory 2 .. 18

Figure 5-3 Create a New Project ... 19

Figure 5-4 Install MQTTnet ... 20

Figure 5-5 Create a WPF File.. 23

Figure 5-6 Login Interface on UWP ... 23

Figure 5-7 Register Interface on UWP ... 24

Figure 5-8 Main Page Interface on Android ... 24

Figure 5-9 Chat Page Interface on Android 1 .. 25

Figure 5-10 Chat Page Interface on Android 2 .. 25

43

Figure 5-11 Server Interface .. 26

Figure 5-12 Check the IP Address ... 35

Figure 5-13 Open the MqttNetServer Application .. 35

Figure 5-14 Insert IP Address and Port in Server .. 36

Figure 5-15 Insert IP Address and Port in Client .. 36

Figure 5-16 Close the Firewall ... 37

44

Appendix B – List of code

Code 5-1 Local Storage API .. 21

Code 5-2 Pop-up Box API ... 22

Code 5-3 Encapsulate Registration Function .. 26

Code 5-4 Deal with Received Message ... 27

Code 5-5 Subscribe for Received Message .. 27

Code 5-6 Load History Message ... 28

Code 5-7 Send Message ... 28

Code 5-8 Initialize MQTT Client 1.. 29

Code 5-9 Initialize MQTT Client 2.. 29

Code 5-10 Initialize MQTT Server ... 30

Code 5-11 Process of Web API ... 31

Code 5-12 Rebuild Library .. 32

Code 5-13 Create a New User Information Table .. 32

Code 5-14 Create a New Message Table .. 32

Code 5-15 Create a New Realationship Table ... 32

Code 5-16 Return the Data in the First Column of the First Row 33

Code 5-17 Read and Write the SQLite File ... 34

45

Appendix C – Content of USB Striker

1. Thesis paper (PDF version):” YuanZun_Thesis.pdf”

2. Thesis paper (WORD version):” YuanZun_Thesis.docx”

3. Xamarin app:” AppChat.7z”

4. OperationGuide.pdf

46

Bibliography

[1] Cridland D. XEP-0286: XMPP on Mobile Devices[J]. XMPP Standards Foundation,

2010.

[2] Niemi A. Session Initiation Protocol(SIP) Extension for Event State Publication[J].

Networking&Communication Engineering, 2004(2).

[3] Wikipedia, Visual Studio introduction. Retrieved from URL:

https://en.wikipedia.org/wiki/Microsoft_Visual_Studio [Accessed: 30.05.2019]

[4] Kevin Ashley. Cross-Platform Productivity with Xamarin[J]. MSDN magazine, 2016,

31(9): 36-42.

[5] Microsoft, Xamarin.Forms. Retrieved from URL: https://docs.microsoft.com/en-

us/xamarin/xamarin-forms/ [Accessed: 30.05.2019]

[6] SQLite, About SQLite. Retrieved from URL: https://www.sqlite.org/about.html

[Accessed: 30.05.2019]

[7] Qi Ming, Xamarin is free, what can you do? Retrieved from URL:

https://www.cnblogs.com/hobe/p/5385539.html [Accessed: 30.05.2019]

[8] Raspberry Pi foundation, Raspberry Pi 3 Model B+. Retrieved from URL:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ Accessed:

30.05.2019]

[9] Microsoft Visual Studio, Download. Retrieved from URL:

https://visualstudio.microsoft.com/zh-hans/downloads/ [Accessed: 30.05.2019]

[10] Microsoft Visual Studio, Visual Studio Emulator. Retrieved from URL:

https://visualstudio.microsoft.com/vs/msft-android-emulator/ [Accessed: 30.05.2019]

[11] MQTT, MQTT Frequently Asked Questions. Retrieved from URL:

http://mqtt.org/faq [Accessed: 30.05.2019]

[12] Michael Yuan, First met MQTT. Retrieved from URL:

https://www.ibm.com/developerworks/cn/iot/iot-mqtt-why-good-for-iot/index.html

[Accessed: 30.05.2019]

https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://www.sqlite.org/about.html
https://www.cnblogs.com/hobe/p/5385539.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://visualstudio.microsoft.com/zh-hans/downloads/
http://mqtt.org/faq
https://www.ibm.com/developerworks/cn/iot/iot-mqtt-why-good-for-iot/index.html

47

[13] S.Ramana, N Bhaskar, M.V.Ramana Murthy, S China Ramu. Mobile Commerce

using ECC and MQTT Protocol. IAPE’ 19, Oxford, United Kingdom.

[14] YunliaoIM, Briefly Introduce the Release/Subscription Mode of MQTT. Retrieved

from URL: http://www.yunliaoim.com/im/919.html [Accessed: 30.05.2019]

[15] International Business Machines Corporation (IBM), Eurotech, MQTT V3.1

Protocol Specification. Retrieved from URL:

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#qos-flows

[Accessed: 30.05.2019]

[16] Chirstian, Simple Client Demo of MQTTnet. Retrieved from URL:

https://github.com/chkr1011/MQTTnet/wiki/Client [Accessed: 30.05.2019]

[17] landbroken, Learn how to use mqtt with open source lib in C#. Retrieved from URL:

https://github.com/landbroken/MQTTLearning [Accessed: 30.05.2019]

[18] Microsoft, XAML overview (WPF). Retrieved from URL:

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/xaml-overview-wpf

[Accessed: 30.05.2019]

[19] SQLite, Database Speed Comparison. Retrieved from URL:

https://www.sqlite.org/speed.html [Accessed: 30.05.2019]

[20] Chirstian, MQTTnet Retrieved from URL: https://github.com/chkr1011/MQTTnet

[Accessed: 30.05.2019]

[21] Michael Yuan, Getting to know MQTT. Retrieved from URL:

https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/ [Accessed: 30.05.2019]

[22] Microsoft, Visual Studio Emulator for Android. Retrieved from URL:

https://visualstudio.microsoft.com/vs/msft-android-emulator/ [Accessed: 30.05.2019]

http://www.yunliaoim.com/im/919.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#qos-flows
https://github.com/chkr1011/MQTTnet/wiki/Client
https://github.com/landbroken/MQTTLearning
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/xaml-overview-wpf
https://www.sqlite.org/speed.html
https://github.com/chkr1011/MQTTnet
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/

