
Abstract of Thesis

iv

Zusammenfassung der Arbeit

Abstract of Thesis

Fachbereich:

Department: :

Studiengang:

University course: :

Thema:

Subject:

Zusammenfassung:

Abstract:

Verfasser:

Author:

Betreuender Professor/in:

Attending Professor:

WS / SS:

Raspberry Pi Programming with Windows IoT using C# and

Xamarin.Forms – Hardware connections with I²C

The aim of this thesis is to investigate the possibilities and limitations of Raspberry Pi

programming with Windows IoT operating system and Xamarin.Forms – a cross-platform

development toolkit in C#. The thesis was conducted in May 2018 at Fachhochschule Lübeck.

This topic is of interest because the Raspberry Pi, Windows IoT and Xamarin.Forms are new

technologies for software development. This study did several programming experiments.

These programs were connected to I²C devices to fulfil their tasks such as run time comparison

to Python, converting Windows Forms applications to Xamarin.Forms applications,

automation control program for temperature and balance, and remote control with Android

smartphone. In addition, some C# external libraries like “Microcharts” for chart display and

“MicroTimer” for high-performance timer were also investigated and used in the programs.

The results show that Raspberry Pi with Windows IoT is capable of performing the automation

control as expected, the “Microcharts” and “MicroTimer” can be easily implemented by

Xamarin.Forms. Furthermore, the conversion of the old C# applications as well as the cross-

platform programming in Xamarin.Forms is considerably convenient. Despite of its limitation

of compatibility problems and lack of UI elements, the Xamarin.Forms with Raspberry Pi and

Windows IoT has shown their potential and they may be a suitable platform for software

development. This thesis may be useful in providing an alternative way of Raspberry Pi

programming and cross-platform application development.

Electrical Engineering and Computer Science

Information Technology

Qiwen Gu

Prof. Dr. Jörg Bayerlein

SS <2018>

Table of Contents

v

Table of Contents
Abstract of Thesis .. iv

Table of Contents ... v

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Goal ... 1

1.3 Organization .. 2

2 Basic information and technologies ... 3

2.1 Hardware and development environment .. 3

2.2 Background knowledge ... 3

2.2.1 Raspberry Pi ... 3

2.2.2 I²C devices .. 4

2.2.3 Xamarin.Forms and C# .. 5

2.2.4 Microsoft Visual Studio ... 6

3 Design of the main applications ... 7

3.1 Functional requirements of the main applications ... 7

3.1.1 Analog and digital convertor voltage measurement ... 7

3.1.2 Chart display .. 7

3.1.3 Temperature automation control .. 7

3.1.4 Android smartphone remote control .. 7

3.1.5 Balance automation control .. 7

3.1.6 Page navigation .. 8

3.2 Non-functional requirements of the main applications ... 8

3.2.1 Usability ... 8

3.2.2 Reliability ... 8

3.2.3 Compatibility .. 8

3.2.4 Programming and human interface design ... 8

3.2.5 Extensibility ... 8

3.3 Device connection design for experiment ... 9

3.4 Software structure .. 9

3.4.1 Human interface design .. 9

3.4.2 Use case diagram .. 10

Table of Contents

vi

3.4.3 Class diagram ... 11

4 Implementation of the applications .. 16

4.1 Setting up Raspberry PI 3 .. 16

4.1.1 Cable connection with peripherals ... 16

4.1.2 Windows 10 IoT installation and software configuration .. 17

4.1.3 Visual Studio configuration ... 18

4.1.4 Cable connection with I²C devices ... 20

4.2 Timing performance comparison ... 21

4.2.1 Install Raspbian operating system on Raspberry Pi ... 21

4.2.2 Timing performance application programming ... 21

4.2.3 Result of timing performance comparison ... 22

4.3 Timer component in Raspberry Pi ... 24

4.3.1 Problem and timer components in C# .. 24

4.3.2 Principle of the “MicroTimer” ... 24

4.3.3 Implementation of the “MicroTimer” with “DependencyService” 25

4.3.4 Hardware connection with voltage meter ... 26

4.3.5 Result of “MicroTimer” output .. 27

4.4 Xamarin.Forms programming with 2 ADCs and 2 DACs hardware 28

4.4.1 Hardware connection with Raspberry Pi .. 28

4.4.2 Original application introduction ... 29

4.4.3 Human interface programming .. 29

4.4.4 Functional programming .. 31

4.4.5 Result of “ADC-DAC” application .. 32

4.5 Chart display in Raspberry Pi .. 33

4.5.1 Problem and solution of chart display on Raspberry Pi ... 34

4.5.2 Implementation of the “Microcharts” .. 34

4.5.3 Result of “Microcharts” display on Raspberry Pi .. 36

4.6 Temperature automation control program ... 37

4.6.1 Raspberry Pi hardware connection ... 37

4.6.2 Temperature control program development ... 39

4.6.3 Result of temperature control on Raspberry Pi .. 41

4.7 Remote Raspberry Pi control with Android smartphone ... 41

Table of Contents

vii

4.7.1 Database connection ... 42

4.7.2 Hardware connection with Raspberry Pi .. 44

4.7.3 Temperature control application modification ... 45

4.7.4 Android application programming ... 46

4.7.5 Result of remote control application .. 46

4.8 Balance automation control program .. 49

4.8.1 Hardware connection to the balance control device ... 49

4.8.2 Balance control program transformation to Xamarin.Forms 50

4.8.3 Result of balance control program transformation ... 51

5 Summary .. 53

5.1 Conclusion and evaluation... 53

5.2 Outlook .. 54

6 Acknowledgement .. 56

7 Reference .. 57

8 List of Figures/Tables/Listings ... 61

8.1 List of Figures .. 61

8.2 List of Tables ... 62

8.3 List of Listings ... 62

9 Abbreviation ... 63

10 Appendix .. 64

10.1 Mockup of the applications .. 64

10.2 Method descriptions in “ADC-DAC” program ... 66

10.2.1 The human interface interaction methods .. 66

10.2.2 The I²C device management methods .. 67

10.2.3 The ADC/DAC communication methods .. 68

10.3 Element names of the applications .. 69

10.4 Information about original Windows Forms application ... 71

Introduction

1

1 Introduction
In this paper, the motivation as well as the problem area will be addressed, and the introduction of

Raspberry Pi, Xamarin.Forms and other technologies will be proposed. The details of setting

Raspberry Pi and how it was used with other devices will be introduced. In addition, several

experiments will be mentioned, including the hardware connection and functional realization by

C# programming language. In the end, the result of the experiment and further improvements will

be evaluated.

1.1 Motivation

Nowadays, Computers play various important roles in industry and society all over the world and

they also contribute to the need of interconnected electronic devices and Internet of Things

(IoT).With the development of hardware technology and protocols such as I²C, computers and

micro controllers start to transfer into smaller size and better performance. Raspberry pi, for

instance, is a small-size computer, which is designed by the Raspberry Pi Foundation in Britain [1].

It is low-cost, low-power and compatible with many operating system. In that case, it is designed

for educational use on computer science and practical experiments [1]. In this case, Raspberry Pi

might be a common hardware platform for software development in the future. Therefore, further

research on the Raspberry Pi is necessary.

1.2 Goal

Preciously, several experiments have been conducted to implement Raspberry pi into practical use

like remote storage, automatic control for small program [2], sensor detection [3] and so on. In

most cases the functionalities are realized by using Python or C++ as programming language,

because they are easier for the developers to understand and maintain the code. Moreover. They

are extensible with many convenient libraries, which makes the program more extensible.

However, there still exists blanks in the current research on the Raspberry pi programming. The

problem area is addressed at the programming language, operating system and programming

platform on the Raspberry Pi. Normally, python or C++ is used as programming language and

programs are developed directly by the corresponding integrated development environment (IDE).

Considering the fact that many engineering programs are also developed in C#, it is still unknown

whether C# programs can also run on Raspberry Pi. In addition, a new programming platform

needs to be investigated which supports C# programming and makes software development more

convenient.

Introduction

2

In this paper, several programs were developed in C# using Xamarin.Forms, which is a new

programming platform introduced by Microsoft. The programs were executed on Windows 10

Universal Windows Platform (UWP) on the Raspberry Pi to perform specific functionalities in

combination with I²C devices and electrical circuit. This paper aims at finding out the possibility

of developing applications using Xamarin.Forms on the Raspberry Pi installed with Windows 10

IoT operating system. Moreover, the limitations of Raspberry Pi and Xamarin.Forms will be

evaluated after the experiment.

1.3 Organization

This paper is composed of 4 main sections. In Section 2, the basic knowledge of the required

hardware and software is introduced. The Section 3 provides the primary design of the applications

to be developed in the thesis including software specification and hardware setup. In Section 4, the

implementation of the applications and several research about the topic is documented. In the end,

in Section 5, the evaluation and conclusion about the Raspberry Pi, Windows IoT and

Xamarin.Forms is provided, and suggestions for further research is mentioned.

Basic information and technologies

3

2 Basic information and technologies
This section introduces the basic knowledge about the hardware and software used in the paper in

order to provide a primary understanding of the technology.

2.1 Hardware and development environment

In this paper, a laptop was chosen as the programming tool. The laptop was equipped with Intel®

Core™ i7-4710HQ CPU @ 2.5GHz, 16 GB DDR3L RAM @1600MHz and the operating system

was Windows 10 Home version 1709.

2.2 Background knowledge

In this section, the technical parameters and the characteristics about the Raspberry Pi will be

provided and Xamarin.Forms will be introduced. Both of them are relatively new since Raspberry

Pi was released in February 2012 [4] while the Xamarin.Forms was released on May 28, 2014 [5].

In addition, the principle of I²C device will be introduced. Moreover, Microsoft Visual Studio was

used as the integrated development environment (IDE) for coding. This section enables the reader

to have a primary understanding of the technologies used in this paper.

2.2.1 Raspberry Pi

Raspberry Pi is a computer which is in the size of a card [6]. It can be seen as a computer providing

elementary functions. Raspberry Pi can be install with many open-source operating systems such

as Raspbian [7], which supports all kinds of functions and is easily usable by people. So it becomes

a widely used device for learning programming in education institutions and for personal purpose

as well [6]. In this paper, the Raspberry Pi 3 Model B was used and it was installed with Windows

10 IoT operating system, version 10.0.16299.15.

Basic information and technologies

4

Figure 2-1: The structure of the Raspberry Pi 3 Model B

According to the Figure 2-1, the Raspberry Pi consists of I/O, CPU/GPU, RAM, USB hub, Ethernet

plot, TF card slot and so on, which is a typical von Neumann architecture. The Raspberry Pi 3

Model B has 40 GPIO pins which are used for communication with other electronic devices via

reading and writing the digital signals [8]. For the purpose of I²C communication, the GPIO #2 and

GPIO#3 was used. The GPIO #2 is serial data-line (SDA), which reads and write 8 bit data with

other, and the GPIO #3 is serial clock-line (SCL), which sends the clock signal for synchronization

[8].

2.2.2 I²C devices

Nowadays, Inter-Integrated Circuit (I²C) devices play an important role in the industry. In 1982, it

was invented by Philips Semiconductor, which now becomes the NXP semiconductors [9] [10].

As is shown in Figure 2-2 [11], the I²C devices are connected in bus topology serially. There are

one master device and multiple slave devices on the line to communicate with each other.

Figure 2-2: Inter-Integrated Circuit (I²C) connection [11]

The I²C devices have 4 input pins. First, the VCC and GND pins are used as +5V or +3.3V power

supply. Second, the serial clock-line (SCL) and serial data-line (SDA) are used for data

https://en.wikipedia.org/wiki/Philips

Basic information and technologies

5

transmission. Sensors, processors and microcontrollers are common peripherals which support the

lows-peed, short distance and intra-board communication [12].

In order to make use of the I²C devices, registration and configuration need to be done in advance.

The I²C devices contains 7-bit address space and 1-bit read/write signal. They are expressed in

hexadecimal form and managed by registers [10]. The configuration of the I²C devices includes

bus speed, running mode and so on [13]. In addition, in Xamarin.Forms, the I²C address is reduced

into 7 bits, and the read/write actions are realized by specific methods.

2.2.3 Xamarin.Forms and C#

As is introduced by Microsoft (2015), C# supports the application development on .Net Framework.

It is one of the object-oriented languages and is widely used in development for instance: Windows

client applications, distributed applications, client-server applications and so on [14].

In addition, developers who have the experience of C, C++ or java programming will find it easy

to get familiar with C# syntax. It is supported by many integrated development environments such

as Visual Studio and develop platform for example Xamarin.Forms [14]. Considering these

advantages, C# was selected as the programming language in this paper.

Generally speaking, there exist 3 main platforms for the mobile devices: Android, iOS and

Universal Windows Platform (UWP). However, the cross-platform application demands many

efforts because developers have to transfer one programming language to another. Therefore,

Xamarin.Forms is a general and open-source platform which introduced one possible solution to

overcome this problem. Petzold (2016) describes that Xamarin.Forms enables the developers to

“use the same programming language, APIs and one single IDE to build cross-platform

applications based on a shared C# codebase.” [15]. Developers can create applications for iOS,

Android, UWP and debug, update, maintain them at the same time.

As is shown in Figure 2-3, Xamarin.Forms makes use of the .NET Framework class library and the

code is platform independent [15]. So when the project solution is created, it can be chosen as a

Shared Asset Project (SAP), whose code and the program files can be directly used by other

projects; or a Portable Class Library (PCL), which transfers the important and frequently used code

to a Dynamic-Link Library (DLL), so other project can refer to the DLL and reuse the code [15].

https://en.wikipedia.org/wiki/Microcontroller

Basic information and technologies

6

Figure 2-3: Xamarin C# libraries bind to native OS SDKs [15]

Considering the different way of programming between SAP and PCL, PCL is much more suitable

for programming complex cross-platform applications [16]. Since the general functionalities are

described in the interface and realized in independent platforms, it is more convenient for code

debugging, maintenance and functional extension.

In 2017, the new version of the Xamarin.Forms supports .Net Standard project, which is a

replacement of PCL [19]. In this paper, the Xamarin.Forms was used to program the C# code and

the .Net Standard project was chosen as the standard project type.

2.2.4 Microsoft Visual Studio

The Visual Studio is an interactive development environment (IDE), it supports many

programming languages, including JavaScript, C++, C# and so on [20]. It also allows the code

editor and debugger, which enables developers to view and edit various kinds of code, and then

debug, build, and publish applications for Android, iOS, Windows, the web, and the cloud [20].

Nowadays it is widely used for programming because it is usable for nearly all kinds software

development for instance games, webs and mobile applications [20]. In addition, it can be extended

with many plugins which supports other functions. Considering these advantages, Microsoft Visual

Studio Professional 2017 (Version 15.6.6) was used in this paper. Because the Professional version

supports more functionalities for instance emulator plugins, method reference indication, chart

edition and so on. The Professional version is much more convenient for coding and debugging.

Design of the main applications

7

3 Design of the main applications
This section introduces the primary design of the applications and the specification of it. In addition,

information about the general connection of Raspberry Pi with other devices is provided.

3.1 Functional requirements of the main applications

The functional requirements describes the main functionalities of the applications, which enable

the Raspberry Pi to fulfill specific tasks.

3.1.1 Analog and digital convertor voltage measurement

The program called “ADC-DAC” should provide a page for initializing and configuring the 2

ADCs and 2 DACs. In addition, the user should be able to control the output voltage of both DACs

and observe the input voltage of both ADCs.

3.1.2 Chart display

The application should provide a single chart page which shows curves of the input voltage of the

ADCs in real-time. The real-time chart display should refresh itself every 1 second.

3.1.3 Temperature automation control

The application should provide a page which provides the functionality of temperature automation

control. The user can set the desired temperature by the potentiometer on the “Hand Dryer”

hardware and the Raspberry Pi controls the output voltage of DACs to meet the desired temperature.

The input voltage of ADCs and the output control voltage of DACs should be shown on the screen

every 1 second.

3.1.4 Android smartphone remote control

This is another application which is run both on Xamarin.Forms.Android and

Xamarin.Forms.UWP at the same time. The main functionality is same as the temperature

automation control. Additionally, the user can use the Android smartphone to control the desired

temperature and the user can observe the current temperature, DAC output control voltage and

temperature curves on the Android smartphone.

3.1.5 Balance automation control

The application should have a child page called “Balance control”. The Raspberry Pi runs the

program to automatically control the balance of a specific balancing device.

Design of the main applications

8

3.1.6 Page navigation

Except the Android smartphone remote control application, other programs should be integrated

as a single application. The master page enables user to switch to the desired page conveniently.

The detailed page includes analog and digital converter voltage measurement, chart display,

temperature control and Balance control.

3.2 Non-functional requirements of the main applications

The non-functional requirements describes the properties and desired requirements of the

applications.

3.2.1 Usability

The applications mainly focus their target users on electrical engineers. They have the experience

of working with analog and digital converters, electric circuit, and I²C devices. They are able to

use electronic devices and tools to conduct experiments. After 30-minutes instruction, the user can

be familiar with the applications and use them to conduct the experiments within 30-minutes

instruction.

3.2.2 Reliability

The applications should use some methods to avoid initialization and configuration mistakes

caused by careless users or errors which caused by external environment for instance poor network

connection.

3.2.3 Compatibility

The applications should be able to run on the platforms which are supported by Xamarin.Forms,

including Android and UWP.

3.2.4 Programming and human interface design

The applications code should have a clear structure and contains necessary description. It should

also follow the coding convention of C#. The human interface design should provide necessary

assistance and information to the users for the experiments.

3.2.5 Extensibility

The application files should be named clearly. The detailed description of the visual elements’

names should be documented for the reader and developer. In addition, basic methods should be

clearly implemented so that the extension and modification of the applications is convenient.

Design of the main applications

9

3.3 Device connection design for experiment

The Figure 3-1 shows the design of the required devices for the thesis. The applications in this

paper are based on the I²C devices, so the connection of the Raspberry Pi with these devices needs

to be introduced in detail.

Figure 3-1: Device connection design

As can be seen, the Raspberry Pi was connected with 2 I²C devices by I²C cables. Each device had

2 analog to digital converters (ADC), 2 digital to analog converters (DAC) and other electric

components. The I²C devices were connected to different electrical devices by electrical cables to

perform specific tasks. In addition, the Android smartphone can remotely control the Raspberry Pi.

3.4 Software structure

At the beginning of the implementation phase, the software structure was first designed by means

of mockups, use case diagram and class diagram.

3.4.1 Human interface design

Before the application development, the human interface design was first conducted and the

mockup of each page was primarily designed. However, since some programs were based on the

original programs on Windows Forms [17] and other programs’ human interface were deeply

related to the functionalities, the description of the human interface interaction will be separated

Design of the main applications

10

into each task parts in Section 4. Additionally, the mockups of the applications is provided in

Appendix 10.1.

3.4.2 Use case diagram

Figure 3-2: Use case diagram of the applications

As was mentioned earlier, there were 2 separate applications: “I2CADDA” was used for “ADC-

DAC” program, chart display, temperature control and balance control, while “TempCon” was

used for remote temperature control. According to the use case diagram, there are 8 use cases,

which are explained in detailed below:

1. The user can enter the “ADC-DAC” page to use the analog to digital converters (ADC) and

digital to analog (DAC) converters.

2. When the user is in “ADC-DAC” page and wants to use the ADCs and DACs, the

initialization and configuration of these converters should be done at first.

3. The user can read the ADC and DAC values in the “ADC-DAC” page.

4. In the “ADC-DAC” Page, the user can control the DAC output value to output desired

voltage on the device.

5. In “I2CADDA” application, the user can use Raspberry Pi to control the temperature on

“Hand Dryer”

6. In “I2CADDA” application, the user can use Raspberry Pi to control the balance of the

balancing device.

7. Alternatively, the user can use Android smartphone to control the temperature on “Hand

Dryer” in “TempCon” application.

Design of the main applications

11

8. In both “I2CADDA” and “TempCon” application, the user can read real-time ADC inputs

in “Micro Charts Display” page.

3.4.3 Class diagram

The class diagram describes the structure of the classes and libraries which are necessary for

realizing the functionalities. The main structure of the applications kept similar to the original

Windows Forms applications [17].

According to Figure 3-3, “I2CADDA” was composed of 2 platform projects: the PCL project and

UWP project. In PCL project, the interface “IReadWriteI2C” was added in file

“MainPage.xaml.cs”, it was used for managing I²C devices as well as “MicroTimer”. Then in the

UWP project, the class “ReadWriteI2C” implemented the interface in “MainPage.xaml.xs”, it also

included “MicroLibrary” class to initialize and manage the “MicroTimer”. Specifically, the

parameters in “ReadWriteI2C” were responsible for the control algorithm of temperature control

and balance control.

In addition, the PCL project, the master page “HomePage” and 4 child page were created. As is

shown in Figure 3-4, the “MainPage” was implemented as the application “ADC-DAC”, the

“MicroChartsView” was used for chart display of the ADC inputs. Then “TempCon” and “BalCon”

were responsible for temperature automation control and balance automation control. Moreover,

the “MainPage”, “BalCon” and “TempCon” all called to the interface “IReadWriteI2C” to perform

their tasks in “MicroTimer”.

The structure of “TempCon” application was very similar to the “I2ADDA” because the

functionality of the temperature automation control was almost the same. According to Figure 3-5

and Figure 3-6, an Android platform project was created additionally and the interface “IDAL”

was added into the PCL project for database communication. The UWP and Android both

implement “IDAL” in their “DAL” file. What’s more, the “MainPage” and “MicroChartsView”

both called to “IDAL” to communicate with the database and I²C devices.

Finally after the design phase, the implementation of the applications could be started according to

these specifications.

Design of the main applications

12

Figure 3-3: Class diagram of "I2CADDA" UWP project

Design of the main applications

13

Figure 3-4: Class diagram of "I2CADDA" PCL project

Design of the main applications

14

Figure 3-5: Class diagram of remote application "TempCon" PCL project

Design of the main applications

15

Figure 3-6: Class diagram of remote application "TempCon" UWP project

Implementation of the applications

16

4 Implementation of the applications
In this section, the development phase of Xamarin.Forms C# applications will be introduced. The

sections are divided into 8 parts according to the task list of the thesis. Additionally, some programs

are transferred from the original Windows Forms application [17] and some functionalities were

modified from an existing Xamarin.Forms example application from Prof. Dr. Bayerlein [29] [42].

4.1 Setting up Raspberry PI 3

The first step of utilizing the Raspberry Pi is setting up the hardware and installation of the

necessary operating system. Then the Raspberry Pi can be connected to the computer for

application development.

4.1.1 Cable connection with peripherals

The cable connection of the Raspberry Pi is shown in Figure 4-1. The Raspberry Pi provides many

ports to connect to all kinds of devices and peripherals. Moreover, the Raspberry Pi has Ethernet

ports for cable connection to the network or computer, and it supports Wi-Fi connection as well.

Figure 4-1: The cable connection of Raspberry Pi

Implementation of the applications

17

4.1.2 Windows 10 IoT installation and software configuration

First, the computer with Windows 10 operating system should be installed with Windows IoT Core

Dashboard. This is an administration and configuration software for Windows 10 IoT devices [21].

Second, the TF card should be plugged into the computer. The Windows IoT Core Dashboard

would install the Windows 10 IoT operating system according to the instruction provided by

Microsoft [21]. In addition, a WAVESHARE 10.1” HDMI LCD (H) touch screen in Figure 4-2

was connected to the Raspberry Pi by HDMI and USB port. Specifically, the resolution information

should be written into the “config.txt” file which was located in the root of the TF card. The code

is shown in Listing 4-1.

1 max_usb_currrent=1

2 hdmi_group=2

3 hdmi_mode=1

4 hdmi_mode=87

5 hdmi_cvt 1024 600 60 6 0 0 0

Listing 4-1: Screen resolution information

Figure 4-2: Touch screen connected with Raspberry Pi

Third, The Raspberry Pi should be connected by Ethernet or Wi-Fi to the network. In this paper,

the Wi-Fi connection was used because wireless connection required fewer cables. The Raspberry

Pi was connected to the laptop’s mobile hotspot for communication. The mobile hotspot is

supported by Windows 10 and can be activated easily if the computer is equipped with wireless

network card [22].

Finally, the administration and the setup of the Raspberry Pi could be done with the “Windows

Device Portal” [21]. In Windows 10 IoT Core Dashboard, if the user goes to “My devices” page

Implementation of the applications

18

and double clicks the detected Raspberry Pi, a link called “open in device portal” will be shown at

the bottom. “Windows Device Portal” is opened with a browser and needs login process. According

to Figure 4-3, in the Windows Device Portal, device settings, application management and many

other configurations can be done. User can also see the running process and real-time performance

of the Raspberry Pi. In this thesis, the name of Raspberry Pi was “TR1”, the user name was

“administrator” and password was “123”.

Figure 4-3: Window of “Windows Device Portal”

4.1.3 Visual Studio configuration

If the setup process of the Raspberry Pi is finished, the Visual Studio should be installed with

corresponding development components. The necessary components is shown in Figure 4-4.

Implementation of the applications

19

Figure 4-4: Development component installed in Visual Studio

Then, the Visual Studio can be used for software development. The project should be created as

“Mobile App (Xamarin.Forms)” in “Cross-Platform” section in “Visual C#” folder. Then the target

platforms and “.Net Standard” (PCL) is selected to create the new project.

After programming in Visual Studio, the program can be run either on local machine (computer)

or remote machine (Raspberry Pi). In this paper, since most applications run on UWP operating

system, the UWP was set as the startup project first.

Figure 4-5: Visual Studio debug with local machine

According to Figure 4-5, if the application is debugged on Raspberry Pi, the “ARM”, and

“Universal Windows Platform” and “Remote Machine” should be selected. As is shown in Figure

4-6, the auto-detected Raspberry Pi is be selected. If the Raspberry Pi is undetectable, the IP address

should be typed in to set up a manual connection. In this paper, the Raspberry Pi as the remote

machine was set as the default hardware platform for application debug.

Implementation of the applications

20

Figure 4-6: Visual studio remote machine setup

4.1.4 Cable connection with I²C devices

On the Raspberry Pi, the GPIO #2 SDA pin and #3 SCL pin, together with the VCC and GND pins

are connected to the I²C devices such as “USB ADDA” hardware. As can be seen in the Figure 4-

7, the I²C pins must be connected correctly, otherwise, the hardware might be damaged.

Figure 4-7: I²C pin connection with Raspberry Pi

Implementation of the applications

21

4.2 Timing performance comparison

Generally, the Raspberry Pi applications are programmed in Python with Raspbian operating

system. Raspbian is a common operating system for the Raspberry Pi. It is an open-source

operating system and is optimized for the Raspberry Pi hardware [7]. And it has been installed with

a Python IDE by default. For further application development, a timing test was conducted to find

out the performance difference between Python and Win10- local machines. In that case, the

developer can therefore find out which language is more suitable to use for development. The test

result will be evaluated to determine performance of the Xamarin.Forms and Windows 10 IoT

operating system.

4.2.1 Install Raspbian operating system on Raspberry Pi

In this task, the operating system Raspbian was installed on the Raspberry Pi in advance [23]. The

Raspbian has been initially installed with Thonny. As was stated in the official website (2018),

Thonny is “a Python IDE (Integrated Development Environment) designed for programming

beginners” [24]. One major advantage of Thonny is that its human interface is user-friendly. It

requires less than 10 minutes for a developer to get use of this IDE and program a simple

application without instruction. In this section, the test program was simple and required few

complex functions or external libraries. Considering these reasons, Thonny is a suitable IDE for

this timing comparison test.

4.2.2 Timing performance application programming

In this task, 2 simple programs for the same mathematic calculation process were programmed in

Python and C#, then they were run on both Raspbian and Windows 10 IoT operating system. The

system timer was implemented in the applications to measure the time duration of these 2 programs

to provide a comparison of the timing performance of the 2 programming languages.

First, a square calculation of a double number 1.002 was conducted for 100,000 times. In both C#

and Python, a double number was initialized and a simple “for” loop was used. In the loop, the

number was multiplied by itself.

Second, a string append operation was conducted for 100,000 times. In practice, Python treats the

strings as array of chars [25], while C# with Xamarin.Forms support different kinds of strings. For

example, “String” is a class of the Framework, “string” is an alias for “String” in the .NET

Framework in C# [26], and “StringBuilder” is a specific class of “System.Text” of .NET

Framework in C# for creating and modifying strings [27]. In this test, these classes were all tested

and compared to the string in Python. The detailed string append functions in C# is provided in

Listing 4-2.

Implementation of the applications

22

Listing 4-2: String append codes in C#

As was mentioned above, both programs used system timer to measure the general running time.

In Python, the “time” library was imported and it provided the function “time.time ()” to get the

current time. The run time duration could be calculated by minus the end time by start time. And

the unit was second. In C#, the namespace “System.Diagnostics” [43] was used to initialize the

“Stopwatch” as a timer. The “Stopwatch” provided “Start ()”, “Stop ()”, “Rest ()” methods to

control the timer. At last, by means of “ElapsedMilliseconds ()”, the duration of time could be

achieved in millisecond.

4.2.3 Result of timing performance comparison

The purpose of this test was to investigate the timing difference of the Raspberry Pi with C#

application and Python application. The run time of 2 applications were obtained and recorded in

the following Table 4-3. It is apparent from this table that the double calculation in C# was much

faster than that in Python. As can be seen, the double calculation took only 5 milliseconds in C#,

while the Python took about 162 milliseconds to finish the calculation. What is interesting about

the data in this table is that for both normal string append, including “string” in .Net Framework

and “String” in “System”, C# took more than 24,000 milliseconds, which was much slower than

Python, however, by means of “StringBuilder” methods, the duration was only 4 about

milliseconds. This class had improved the performance extremely when modifying the strings, as

a result, it was almost 50 times faster than Python.

 C# + Windows 10 IoT Python + Raspbian

Double calculation 5 ms 162 ms

String append(System) 24,366 ms 194 ms

string append(.NET) 25,079 ms

StringBuilder

append(System.Text)

4 ms

Table 4-1: Run time comparison between C# and Python

The comparison of the 2 application run time revealed the obvious difference between the

compilation, debugging and the treatment of data in Python and C# on the Raspberry Pi.

1. String str = "";
2. string str2 = "";
3. StringBuilder sb = new StringBuilder(5);
4. for (int i = 0; i < 100000; i++)
5. {
6. str = str + "a"; //String(System) append
7. str2 = str2 + "a"; //string(.Net) append
8. sb.Append("a"); //StringBuilder append
9. }

Implementation of the applications

23

One possible explanation for this timing difference might be the running platform. Since the Python

application was based on Thonny, it took considerably more time for compiling and registering

itself in memory space and it had less priority while requesting the resources for execution than

other processes in CPU. On the other hand, C# program had fewer steps for executing the program

because it was run directly by the CPU as a single process, so its priority was considerably higher

than Python application. This may explain why the double calculation in C# was typically faster

than that in Python.

It is difficult to explain why the duration of string append in C# varied surprisingly, but it might be

related to the different ways of string processing in Python and C#.

As indicated previously, Python was developed in C and it uses character arrays to represent strings.

Therefore, when a string is defined in Python, it is allocated to a piece of memory space. If the

string is modified, a new memory space is assigned to the string In addition, Python internally has

the concept of a buffer pool [28]. In this test, the character “a” was appended after the target string

for 100,000 times, so the character “a” was stored in the pool to avoid having a new space for “a”

each time, therefore duration of normal string append was much quicker than C# string append.

One reason why the time of string process in C# varied surprisingly may be that C# supports

different types of string. As was explained earlier, In C#, the “string” is an alias for “String” and it

changes or improves some string operations. When the “string” is used the compiler will compile

it to “String” automatically [26]. This may explain why “string” append was slightly slower than

“String” append in C#. Moreover, modifying “String” takes time to create a new object and register

it in a new address [26]. Thus, the string modification in C# was nearly 130 times slower in

comparison with Python. Alternatively, the “StringBuilder” supports the string modification by

expanding memory to accommodate the modified string instead of creating a new “String” object

[30]. By means of “append ()” method, new string is appended to the original string. As a result,

the duration time was reduced greatly, which consumed only 4 milliseconds.

This test compared the performance of both C# and Python on Raspberry Pi. By measuring the

duration time of double calculation and string append, the result indicated that Xamarin.Forms with

C# performed considerably better than Python. However, only simple function was tested in the

experiment, and many other functions remained untested, for instance: calculation and processing

of other data type, control structures and sentences, complex functions or instance process and

thread, network transmission and so on. Further research should have a more complex and

comprehensive test about these 2 programming languages in order to have a better understanding

of the difference between C# and Python.

Implementation of the applications

24

4.3 Timer component in Raspberry Pi

In many applications, a timer is needed to control the looping functionality in a fixed time duration.

According to the definition provided by Microsoft (2018), a timer is a class which can “create and

recur an event according to the set interval” [31]. In some cases, a high performance timer is

essential for the control system for special functional requirements. Previous studies made use of

different system timers to only fulfill the tasks but they paid little attention on the performance of

the timer components. There is still uncertainty, however, whether there exists such kind of timer,

which provides the high-performance timing functionality and is available for the Xamarin.Forms

in C# on the Raspberry Pi. Therefore, this study first investigated the default system timer

components and evaluated their performance, then a third-party open-source timer library for C#

was investigated and tested by running it on Raspberry Pi to verify its performance.

4.3.1 Problem and timer components in C#

The .NET Framework Class Library offers 4 classes of timer. In most cases, the

“System.Timers.Timer” and “System.Threading.Timer” are used in Xamarin.Forms [32].

Microsoft (2018) introduces that the “System.Timers.Timer” class is server-based and designed for

a multithreaded environment. The “System.Timers.Timer” execute the “OnTimedEvent ()” method

according to the set interval property [31].However, this class is unavailable for Universal

Windows Platform. In that case, the “System.Threading.Timer” class is used instead. The use of

“System.Threading.Timer” is similar to the “System.Timers.Timer”, a timer “TimerCallback”

class as well as its event handler method should be initialized and implemented [32].

These 2 timers might be sufficient for normal application, but there exists limitation about the

resolution of the timer. As noted by Ken (2013):“The limitation of the normal system timer is that

Windows is unable to provide a high-performance timer which has the interval of less than 15

millisecond accurately. If the interval is set less than the resolution of the system clock, the

“TimerCallback” method will execute according to the system clock interval, which is about 15

milliseconds in Windows” [33]. Therefore, a new timer should be used to solve the problem, and

the solution may be the “MicroTimer”.

4.3.2 Principle of the “MicroTimer”

The “MicroTimer” is a third party library for timing functionality. It is developed in C# and

provides the library file and can be easily used without knowing the exact code. It provides a timer

which has the accuracy approximately 1 microsecond [33].

The calling of “MicroTimer” is similar to other system timers. The definition of the time interval

is in microseconds and the “MicroTimer” execute the “OnTimedEvent” function to perform the

desired functionality. However, the performance depends highly on the operating system as well.

Implementation of the applications

25

If the operating system shifts the resources to other threads or processes, the “MicroTimer” may

encounter timing delay [33].

In the next part of the section, the detailed implementation of “MicroTimer” in Xamarin.Forms

will be described and the performance will be tested to find out whether “MicroTimer” performs

as well as it is designed to be on Raspberry Pi.

4.3.3 Implementation of the “MicroTimer” with “DependencyService”

The use of the “MicroTimer” was simple. First, the ZIP file of the “MicroTimer” library should be

downloaded and extracted as file [33]. Then in Visual Studio, the “MicroLibrary.cs” file was added

as an existing file into the UWP project. And the setup process was already finished.

The main codes were placed at the PCL project, and the “MicroLibrary.cs” was added in UWP

project because the “MicroTimer” was only available on UWP platform. Since they were in

different platform, the access of the parameters and methods from PCL project to UWP project

needed a special way, that was, the “DependencyService”. Microsoft (2017) describes that “the

‘DependencyService’ enables the application to call the platform-specific methods from shared

code” [34]. In practice, the Xamarin.Forms application needs 5 steps to use “DependencyService”.

First, in order to implement the “MicroTimer”, an interface called “IReadWriteI2C” was created

in the “MainPage.xaml.cs” in PCL project. In the interface, an initialization method called

“InitTimer (int interval)” was added.

Second, in the UWP project, the implementation of the interface “IReadWriteI2C” was done in

“ReadWriteI2C” class in the “MainPage.xaml.cs” file. There the method “InitTimer (int interval)”

was implemented, a new “MicroTimer” object was created and the desired interval of the timer

was set. Additionally, the timer was assigned a “MicroTimerElapsedEventHandler” called

“OnTimedEvent” to fulfill the tasks and the timer could be started.

Third, the “OnTimedEvent” method was implemented in the same file to realize the functionality

of the timer tick event.

Fourth, the “ReadWriteI2C” are registered with metadata code “[assembly:

Xamarin.Forms.Dependency(typeof (I2CADDA.UWP.ReadWriteI2C))]” at the file header. So the

general PCL project can find the correct implementation of the interface in each platform project

[34].

Later, when the “InitTimer (int interval)” method was needed in PCL project, an instance of the

“DependencyService” object was created. Therefore the methods call from the PCL project to the

UWP project could be realized.

The whole steps of “DependencyService” is established by the Figure 4-8 [34], as can be seen, the

implementation of the interface is done in separate platforms and the PCL project only needs to

call the methods from the interface to fulfill the tasks. Even though the implemented code, imported

libraries and used components may be different from each other, the functionality and behavior of

Implementation of the applications

26

each platform project keeps the same. “DependencyService” separates the platform specific code

into different project and makes the development and maintenance of the application much easier.

Figure 4-8: Steps of implementation of "DependencyService" [34]

In this test, a simple test of the “MicroTimer” was conducted on the Raspberry Pi. The code of the

“DependencyService” and “MicroTimer” were referred and modified from the example from Prof.

Dr. Bayerlein [29]. The interval of the “MicroTimer” was set to “1” which meant the period of the

timer was 1 milliseconds. In the “OnTimedEvent”, the “USB ADDA” device produced an output

voltage of 0 volt or 1.25 volt each time (the use of the digital and analog converters in

Xamarin.Forms will be also introduced in section 4.4).

4.3.4 Hardware connection with voltage meter

In this test, the “USB ADDA” was connected to the Raspberry Pi via I²C cables. The “USB ADDA”

was composed of 2 analog to digital converters (ADC), 2 digital to analog converters (DAC) and

other electric components, it provided many output and input ports for different range of voltage.

According to the Figure 4-9, A and B are analog output ports from 0 volt to +5 volt, while C and

D are analog output ports from -10 volt to +10 volt. Additionally, E and F are analog input ports

from – 10 volt to +10 volt, G and H are analog input ports from – 20 volt to +20 volt.

Implementation of the applications

27

Figure 4-9: Ports of "USB ADDA" device

In order to observe the accurate output, the DAC 0 (port C) and GND ports were connected to

“RIGOL DS1074B” digital oscilloscope to display the output curve on the screen. The curve would

indicate whether the timer tick really happened in each 1 millisecond.

4.3.5 Result of “MicroTimer” output

The result of the test was show in the Figure 4-10. As can be seen, the DAC 0 generated the voltage

curve from 0 volt to 1.25 volt. It is apparent in the figure that the scale of the curve was 500

microseconds and each impulse took 2 scales, which meant that the interval was exactly 1

milliseconds.

Figure 4-10: “MicroTimer” minimum interval test result

According to the result, the interval of the “MicroTimer” running on Windows 10 IoT on the

Raspberry Pi was indeed 1 millisecond. This test has proved that the “MicroTimer” also supported

Implementation of the applications

28

the development of Xamarin.Forms application and on Raspberry Pi hardware. The performance

of it remained the same as the Windows local applications.

As a result, the Raspberry Pi could make use of the “MicroTimer” library to develop UWP

applications and realize high-performance timing functionalities. In this project, the “MicroTimer”

was used in temperature control application and the balance control application, because both of

them required an accurate timer.

4.4 Xamarin.Forms programming with 2 ADCs and 2 DACs hardware

In this section, a new Xamarin.Forms UWP application was programmed. The application was

based on an original application which was programmed on Windows Forms in C# [17]. The main

goal was to program an UWP application “ADC-DAC” which had the similar user interface and

the same functionality. The new application should be run on the Raspberry Pi. This task is of

interest because questions remains to be figured out whether Raspberry Pi is capable of interacting

with human and other I²C devices. In this task, the functionalities as well as the human interface

were modified to improve the usability and reliability. In addition, the code compatibility of the

application was investigated.

4.4.1 Hardware connection with Raspberry Pi

According to Figure 4-9, the Raspberry Pi was connected to the “USB ADDA” hardware. The

analog output ports C and D were connected to the voltage meter “PM 2525 multimeter” to testify

the exact output voltage. The analog input ports E and F were connected to the analog output nodes

C and D directly, which means they shared a same voltage, so the input of the ADCs could be

checked easily. The detailed connection of the Raspberry Pi is shown in Figure 4-11.

Figure 4-11: Raspberry Pi connection with "USB ADDA"

Implementation of the applications

29

4.4.2 Original application introduction

As is shown in the Figure 4-12, the original application was based on Windows Forms platform,

which contained several component: buttons, check boxes, radio buttons, text input fields and so

on. It initialized, configured and controlled the output of the DACs and monitored the input of the

DACs.

Figure 4-12: The original Windows Forms application

4.4.3 Human interface programming

In Xamarin.Forms, the content page had a child of grid view and was divided into 14 rows and 8

columns. Each element was added into the grid and could be automatically adapted to the changing

resolution and window size.

In the content page, elements for example Button, Switch, Entry, Slider and Picker were used. In

particularly, the Picker took place of the Radio Button in Windows Forms and the Switch took

place of the check box, because the Xamarin.Forms supported limited types of visual elements.

The number plus and minus buttons of the “AO” (analog output) were replaced by slider, so that it

was easier to change the value. If the user change the number value in the “AO” (analog output),

the value of the slider will also be changed and vice versa. Besides, the “Counter” and the “VCC”

was used for reset and calibration of the application, which was irrelevant to the new application.

As is shown in Figure 4-13, the new layout of the UWP application “ADC-DAC” was very similar

to the original Windows Forms application. The “Counter” was deleted, and some new switches

and button were added according to the user’s requirements. What to be emphasized is that a switch

Implementation of the applications

30

called “Include 0xC4 ADC on old board” was added into the page, because the UWP application

might control both old temperature automation control device and new “USB ADDA” device.

However, the DAC addresses in these 2 devices were different. As a result, it would be

inconvenient to use the devices. After adding a switch to choose the correct device, it was

unnecessary for the user to change the addresses in the code and therefore it improved the usability

and avoided errors.

Figure 4-13:The new UWP application of ADC DAC

In the original application, the “Init” button must be clicked again to reconfigure the ADCs.

However, it might cause severe errors and crash the application, and it reduced usability of the

application. In order to solve this problem, the reconfiguration method was assigned to each

element, so that after the setting was changed, ADCs would be automatically reconfigured again.

Besides, the “Configure ADC after changing gain ad V.D” button was added into the content page

to change the gain factor of the ADCs specifically.

In order to avoid conflicts and configuration errors caused by careless users, according to the Figure

4-14, if the “Init” button was clicked, the switches such as "Include 0xC4 ADC on old board" and

Implementation of the applications

31

“Second ADC 1015” as well as the “Init” button would be disabled. Moreover, the “Only positive

voltage single ended” switch would become enabled because it was used for ADC configuration

especially for the temperature control device. With the help of these action, the robustness of the

application was improved and the operation logic was clear and understandable.

Figure 4-14: Disable and enable the switches

Generally speaking, even though the layout of the application changed according to the

requirements and target platform, the basic operating step and the functionalities remained similar

to the previous one. So the users should find it easy to get familiar with the new UWP application.

4.4.4 Functional programming

In this section, the realization of the functionalities of the “ADC-DAC” application will be

described. The functionalities of the application could be divided into 3 main categories: human

interface interaction, I²C device management and ADC/DAC communication.

First, the human interface interaction part means the event handler of the visual elements. For

instance, the event handler of the “sliAo0”, “sliAo1” (Sliders of DAC 0/ DAC 1) was realized to

get the value of the slider and show them in “Ao1” and “Ao1” (Entries of DAC 0/ DAC 1). These

kind of methods were responsible for human interface interaction, setting or getting the parameters

for the program. And they played a minor role of the functional action. A table of these methods

are provided in Appendix 10.2.1.

Second, the I²C device management methods were responsible for the I²C devices’ initialization,

configuration and management. In this section, the I²C devices were the 2 analog to digital

converter ADC 1, ADC 0 and 2 digital to analog converter DAC 0, DAC 1. In this part, the

“DependencyService” was used again because only the UWP application supported the I²C device

communication. For example, the method “void InitI2C (int adr, bool fast)” was added into the

interface “IReadWriteI2C” and it was implemented in the UWP project. It got the address and bus

speed of the I²C devices, initialized them and added them into the I²C device list for further

operation. The responsibilities of these method are described in Appendix 10.2.2. What needs to

Implementation of the applications

32

be mentioned is that the methods of I²C initialization and configuration were referred and modified

from the example provided by Prof. Dr. Bayerlein [42].

Among these methods, attention needs to be paid on the I²C initialization and configuration

methods. In fact, an error called “Index out of range exception” happens most likely during the

initialization process of the ADCs and DACs. There may be 2 feasible approaches to this problem,

one solution is initialize and configure the ADCs first and at last initialize the DACs. Another

solution was suspend the configuration for one second using code “System.Threading.Thread.Sleep

(1000)”. Finally the initialization threads could have enough time to finish their work and the

configuration could start successfully.

At last, the ADC/DAC communication methods were programmed to write and read the I²C devices

and fulfill specific functionalities. The basic read and write I²C devices methods were added into

the “IReadWriteI2C” and implemented. Later in the PCL project, task-specific methods were

created to handle data and display them in the human interface. The methods of ADC/DAC input

and output were referred to the example program from Prof. Dr. Bayerlein [42]. Moreover, the

detailed tasks of the methods could be seen in Appendix 10.2.3.

Especially, the “void InitSecondTimer(int interval)” needs to be emphasized. As noted above,

the .NET Framework Class Library provides the “System.Threading.Timer” for Xamarin.Forms

UWP. However, if this timer was used to write data into the visual elements such as Label and

Entry, a threading error called “The application called an interface that was marshalled for a

different thread” would occur. To overcome this problem, another timer called “Device.StartTimer”

in Xamarin.Forms was used [41]. Considering the fact that the timer was only used for observing

the data, the time interval of 1 second was enough. As a result, the “Device.StartTimer” was

adequate for this purpose.

4.4.5 Result of “ADC-DAC” application

This task aims at converting an existing Windows. Form application to the Xamarin.Forms UWP

application. The new application initialized and configured the ADCs and DACs, and changed the

output voltage of DACs (“AO 0 Wert” and “AO 1 Wert”) by means of touch screen.

The Figure 4-15 illustrates the final result of the UWP application. As can be seen, the voltage

meter displayed the output voltage form ADC 0 and ADC 1 (port C and D), and the touch screen

displayed the input voltage at the Label “AI 0 Wert” and “AI 0 Wert”. This result proved that the

new application worked correctly as expected.

Implementation of the applications

33

Figure 4-15: UWP application “ADC-DAC” test result

According the result, Xamarin.Forms provided a relatively good support for the UWP

programming. With help of the “DependencyService”, the UWP application was able to interact

with other hardware. However, parameters and elements in one platform project seemed to be

inaccessible by other platform projects in normal access way. Therefore the same methods had to

be programmed again in other platform, which might consumed more resources in the memory.

In brief, the “ADC-DAC” UWP application was capable of controlling 4 I²C devices at the same

time, and the usability as well as robustness were improved. Moreover, the Xamarin.Forms

platform improved the cross-platform programming and made large program more maintainable

indeed.

4.5 Chart display in Raspberry Pi

Nowadays, many applications provide various diagrams and chart to improve the usability and

enable the user to better understand about the status or the functionalities of the application. Jensen

and Anderson (1992) stated that charts represent the data graphically, in other words, charts can be

used to display information in a comprehensible way [35]. Previous study mainly focused on the

programming technology about cross-platform software development. In the contrary, few

researches have been done about the visual elements for Xamarin.Forms. So it is interesting to find

out whether chart display is also supported by Raspberry Pi and can be integrated into the

Xamarin.Forms applications. In this section, the “Microcharts” was evaluated and used for

displaying the real-time input voltage curve on the screen.

Implementation of the applications

34

4.5.1 Problem and solution of chart display on Raspberry Pi

One requirement of this task was that the chart display plugin should be open-source. In that case,

3 third-party plugins were investigated during the test: “OxyPlots”, “XLabs” and “Microcharts”.

They are all supports C# application development.

Unfortunately problems exists on both “XLabs” and “OxyPlots”. According to the website of

“XLabs” (2017), the plugin is obsolete and unsupported by the latest version of the Xamarin.Forms

[36]. In addition, the “XLabs” seems to support only XAML initialization, which means the

creation of the “XLabs” charts in C# code may be impossible.

Moreover, the “OxyPlots” has the same problem with the “XLabs”, even though the “OxyPlots”

supports the in-code creation of chart views [37], the “.Net Standard” version is obsolete and is

incompatible to the Xamarin.Forms.

The last solution is “Microcharts”. Aloisdeniel (2017) introduced that “Microcharts” was an

external chart library especially for UWP, Xamarin.Forms, Xamarin.iOS, Xamarin.Android and so

on [38]. For instance, “Microcharts” supports bar chart, point chart, line chart, donut chart, radial

gauge chart and radar chart. According to the document, “Microcharts” can only be added into the

human interface by XAML code, however, it may be the only plugin which is still supported by

the .Net Standard and it provides clear and beautiful chart display in human interface. Considering

these reasons, the “Microcharts” was used as the chart library for the real-time chart display on the

Raspberry Pi.

4.5.2 Implementation of the “Microcharts”

First of all, according to the requirement from the user, a navigation bar was needed for integrating

multiple programs into one general application. This could be done by the “MasterDetailPage”. It

could have multiple detailed child pages and a master page as a navigation bar on the left. In the

project “I2CADDA”, a C# content page called “HomePage.cs” was created in PCL project folder

and extended the “MasterDetailPage” class. If one page title is clicked in the navigation bar, the

corresponding the child page will be shown on the right hand side. The implementation was

referred and modified from the example from Prof. Dr. Bayerlein [42].

Second, the “I2CADDA” solution should be installed with the “Microcharts” packages. In the

“Manage NuGet Packages for Solution” window, the “Microcharts” and “Microcharts.Forms”

were downloaded and installed on every platform. The packages also included “SkiaSharp” library

for specific color display.

Third, in the “MicroChartsView.xaml”, the name space of the “Microcharts” and its chart view

was added into the content page. Then in the “MicroChartsView.xmal.cs” file, another

“Device.StartTimer” was created to initialize the chart type, add the data and set the property of

the chart every 1 second.

Implementation of the applications

35

Specifically, the home page can pass itself as an argument to its child pages to initialize them.

Therefore, if the child page has the instance of the home page, it can access other child pages within

the same project folder. In this task, the “MicroChartsView” needed the data of analog input

voltage for chart display, but the data was stored as a list of “Microcharts.Entry” in

“MainPage.xaml.cs” (“ADC-DAC” program). So the “MicroChartsView” accessed the parameter

by the path of “HomePage”. The code example for this task is shown in Listing 4-3.

1. //HomePage.cs

2. //child page initialization in home page

3. MainPage mp = new MainPage();//ADCDAC Page initialization

4. MicroChartsView mcv = new MicroChartsView(this);//Micro Charts View initiali-

zation with HomePage class

5. TempControl tc = new TempControl(this);//Temperature Control View initializa-

tion with HomePage class

6. BalCon bc = new BalCon();//Balance Control View

1. <!-- MicroChartsView.xaml-->

2. <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

3. xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

4. xmlns:forms="clr-

namespace:Microcharts.Forms;assembly=Microcharts.Forms"

5. x:Class="I2CADDA.MicroChartsView">

6. <ContentPage.Content>

7. <StackLayout Orientation="Vertical">

8. <forms:ChartView x:Name="Chart1" HeightRequest="200"/>

9. </StackLayout>

10. </ContentPage.Content>

11. </ContentPage>

1. //MicroChartsView.xaml.cs

2. public partial class MicroChartsView : ContentPage

3. {

4. HomePage hp;

5. public MicroChartsView(HomePage h)

6. {

7. hp = h;

8. InitializeComponent();

9. Device.StartTimer(TimeSpan.FromMilliseconds(1000), () =>

10. {

11. Chart1.Chart = new LineChart { Entries = hp.mp.entries0, LineMode

= LineMode.Straight, MaxValue = 10.0F, MinValue = -10.0F }; //get chart data from

MainPage via HomePage

12. return true; // True = Repeat again, False = Stop the timer

13. });

14. }

15. }

Listing 4-3: Implementation of "MasterDetailPage" and “Microcharts”

Implementation of the applications

36

One limitation of the “Microcharts” is that the line chart can only have one line at one time. If the

user wants to have multiple lines in one chart to compare the value, it is impossible to realize it by

adding another data list. One possible solution is to use the “Grid” layout in the XAML and overlay

2 different charts at the same position. If the opacity of the charts are set as 0.5, both lines can be

seen clearly and the value can be compared. The disadvantage of this solution is that the labels are

also overlaid and unreadable. The two-line chart realized by “Microcharts” is shown in Figure 4-

16. It was used in temperature control program which will be discussed in Section 4.6.

Figure 4-16: Two-line chart realized manually by “Microcharts”

4.5.3 Result of “Microcharts” display on Raspberry Pi

After the implementation of “Microcharts” in “I2CADDA” application, the “ADC-DAC” program

was first started and it stored the analog input voltage into 2 lists of “Microcharts.Entry” every 1

second. Finally, the child page of “Micro Charts Display” could show the real-time input voltage

of ADC 0 and ADC 1. According to Figure 4-17, the Y axis was voltage value and the X axis was

timer information. The curve of the 2 ADCs could be easily readable and comprehensible to the

user.

Figure 4-17: “Microcharts” display on Raspberry Pi

Implementation of the applications

37

Meanwhile, there are 2 disadvantages of the “Microcharts”. First, it can only be added into the

content page by XAML, which is against the preference that the application should be realized by

C# code as much as possible. Second, the charts types provided by “Microcharts” are limited. For

example, the two-line chart is still under development by the author. Despite of these limitations,

the “Microcharts” is still one of the most suitable open-source chart libraries available on

Xamarin.Forms.

In general, therefore, it seems that the “Microcharts” makes real-time chart display possible on

Raspberry Pi. The implementation process is also simple. As a result, “Microcharts” was later used

again for the temperature automation control program and Android remote control application as

well. In addition, the functionalities of “Microcharts” can be investigated more in further research,

for instance, the zooming methods and the in-code creation of the charts needs to be explored.

4.6 Temperature automation control program

Automation control is one of the most important technologies in electrical engineering. Groover

(2014) describes that automation is a technology which can control a system and the assistance

from human is unnecessary for this process [39]. Moreover, previous research conducted by

Singhpannu, Ansari and Gupta (2015) has established that Raspberry Pi with Raspbian operating

system was able to realize an autonomous car driving system [2]. However, the possibility of

automation control on Raspberry Pi with Windows 10 IoT operating system remains uninvestigated

now. This section aimed at converting an existing control system written in C# Windows Forms

into Xamarin.Forms UWP and running it on Raspberry Pi. The program interacted with a “Hand

Dryer” hardware to control the temperature. During this investigation, the application was first

developed and then the ability of Raspberry Pi was evaluated to check whether it was able to control

an electrical control system.

4.6.1 Raspberry Pi hardware connection

This program required 2 hardware devices. The first one is the old temperature control device

which was mentioned in Section 4.4. As can be seen in Figure 4-18, the temperature control device

had 2 ADCs and 2 DACs. A new Raspberry Pi was installed on the device and it was connected

with the I²C devices via the I²C cables. The temperature control device had 2 analog input nodes,

2 analog output nodes and one ground node, which is illustrated in Figure 4-19.

Implementation of the applications

38

Figure 4-18: Structure of temperature control device

Figure 4-19: The input nodes and output nodes of temperature control device

The structure of the “Hand Dryer” is shown in Figure 4-20, it was composed of an air blower, a

heater, a temperature sensor and many other electronic components such as voltage amplifiers and

level shifters. According to the requirement, the user could set the desired temperature by the

potentiometer on the “Hand Dryer” hardware, then the nodes of the temperature control device

were connected to the “Hand Dryer” hardware to read temperature status and output the voltage to

control the power of heater. The detailed cable connection can also be seen in Figure 4-20. In

addition, the “Hand Dryer” also an electrical feedback circuit, if user toggle the switch to “Analog

Mode”, the “Hand Dryer” could control itself automatically without Raspberry Pi.

Implementation of the applications

39

Figure 4-20: Structure and cable connection of "Hand Dryer" device

After the setup process, the program was developed to fulfill the functionality of temperature

automation control.

4.6.2 Temperature control program development

The temperature control program “TempControl” was based on the “I2CADDA” application. A

new child page was added to the “HomePage.cs”. The “TempControl” could also configure and

communicate with the I²C devices using “DependencyService”. In addition, the “MicroTimer” was

modified to perform the automation control according to the requirement.

First, 3 “Entry” fields and a start button were added in the content page of “TempControl.cs”. The

“Entry” fields were used for setting the PID (proportional–integral–derivative controller)

parameters for the automatic control algorithms. If the start button was clicked, the ADCs would

be reconfigured and the “MicroTimer” would be started. Then the Raspberry Pi read ADCs’ input

and displayed the input voltage on the screen. The detailed layout of the “TempControl” is shown

in Figure 4-21.

Implementation of the applications

40

Figure 4-21: Layout of temperature automation control program

Second, the “MicroTimer” in UWP project was modified. The initialization methods got 3

arguments set previously by the user and started the “MicroTimer”. The interval was set to 100

milliseconds. In the “OnTimedEvent” method, the Raspberry Pi read the current temperature signal

from the temperature sensor (ADC 1) and compared it to desired temperature signal (ADC 0) from

the potentiometer, then it calculated the output control voltage according to the automation control

algorithm [40]. The algorithm is shown in Table 4-5, specifically, “qo”, “q1”, “q2” were PID

(proportional–integral–derivative controller) parameters. “yn1”, “xdn1”, “xdn2” were used for

saving the system status. And “yn” was the final output voltage.

Step No. Algorithm method Description

Initialization 1
yn1 = 0, xdn1 = 0, xdn2 = 0

yn=0, xdn=0

Control

algorithm

loop

2 xdn = ADC 1 – ADC 0
Calculation of control

difference

3 yn = yn1 + q0 * xdn + q1 * xdn1 + q2 * xdn2

4
If yn < minimum or yn < maximum:

yn = yn – (q1 + q1 + q2) * xdn

Anti-windup mechanism

5 yn1 = yn, xdn2 = xdn1, xdn1 = xdn
Actualize variables for

next loop

Table 4-2: Control algorithm steps

Implementation of the applications

41

Third, the temperature control device could output the control voltage “yn” via DAC 0 (0V - +10V)

to change the power of the heater and keep pace with the desired temperature. What needs to be

noticed is that the output voltage of DAC 0 should be limited to 0 volt to +10 volt, and the Step 5

in the table must be placed before limiting the DAC 0 value. Otherwise, error may occur and the

automation control program may fail to perform its functionality.

After the development process, the new application was run on Raspberry Pi. The ADC 0, ADC 1

and DAC 0 should be first initialized in page “ADC-DAC”, then the temperature control program

could be started in “Temperature Control” page. Later the control procedure was observed for

evaluation.

4.6.3 Result of temperature control on Raspberry Pi

This section aims at investigating the ability of the Raspberry Pi for automation control

functionality. The time duration of the adjusting procedure was recorded between the 2 stable

statuses. During the test, time duration was measured by an electronic stopwatch. And the

performance of Raspberry Pi was compared to that of the analog feedback circuit on “Hand Dryer”.

As a result, the evaluation of the performance of Raspberry Pi and the application was achieved.

According to the Table 4-6, the Raspberry Pi took on average 25.28 seconds to adjust to the desired

temperature, which was about 1 second slower than the analog electrical circuit. So the

performance was close to some extent.

 Raspberry Pi Analog feedback circuit

Average time duration 25.28 s 24.16 s

Table 4-3: Time comparison of temperature control

The results, as shown in Table 4-6, indicated that the Raspberry Pi installed with Windows 10 IoT

was able to run an automation control system written in C# on Xamarin.Forms UWP platform. The

performance of the application was considerably close to that of the electrical circuit. In addition,

the size of Raspberry Pi was small, which might make Raspberry Pi as well as Xamarin.Forms to

be the suitable platforms for small electrical engineering projects or experiments.

4.7 Remote Raspberry Pi control with Android smartphone

Nowadays, Android smartphone and iPhone occupy the most percentage of the smartphone users,

and UWP is also one of the dominant platforms for portable devices. Recently, many applications

are released on these popular platforms, so one important requirement for them is that the basic

functionalities on every platform should be same. What’s more, applications on different platforms

should be able to communicate with each other. Although Xamarin.Forms supports the cross-

Implementation of the applications

42

platform programming, it is still unknown whether the UWP application running on Raspberry Pi

can communicate with other platforms’ application. In this task, the temperature automation control

application was modified and transferred to Android platform. So the Android smartphone can

control the Raspberry Pi remotely to adjust the temperature on “Hand Dryer” hardware.

4.7.1 Database connection

In this paper, the Raspberry Pi communicated with Android smartphone via network. Both devices

were connected to the Wi-Fi and accessed a shared database for data transmission. Therefore the

Android smartphone could send the desired value to the Raspberry Pi.

The setup of the database and the communication with the database was referred to the bachelor

thesis of Liu (2017) [18]. Specifically, in PCL project, the interface “IDAL.cs” was added for the

“DependencyService” for database connection. In Android project, “MySql.Data.CF” was added

as a reference while in UWP project the “MySql.Data.RT” was added. Each platforms implemented

the “IDAL.cs” methods in their own “DAL.cs” classes.

In order to use the database, 5 data rows were added into the table “RaspiComm” in MySQL

Workbench, including “DAO0”, “DAO1”, “AI0”, “AI1” and “status”. According to the Figure 4-

22, column “text1” stored the name of data, and column “value” stored the data as double. Column

“nb” and “text2” were unnecessary to this application.

Figure 4-22: Structure of data table "RaspiComm" in MySQL Workbench

As can be seen in Figure 4-23, if the “status” is 0, it means that the Raspberry Pi gets desired

temperature from “Hand Dryer” hardware and controls itself. If “status” is 1, the Raspberry Pi is

controlled by the smartphone and gets desired temperature from database, that is, the value of

“DAO1”.

Implementation of the applications

43

Figure 4-23: Local control and remote control of Raspberry Pi

Furthermore, in the original “DAL.cs” class, the SQL sentence simply added new data to the

database and read the latest added data from it. However, if the application requires multiple data,

this approach is infeasible because the program is unable to distinguish different data. On the

contrary, in this application, the “GetValue” and “StoreValue” methods in “DAL.cs” were changed,

the name of the data was past to the methods as an argument and stored in the database together

with the value. So the application could store and get the data according to the name, the specific

code part for “void StoreValue(string name, double data)” is available in Listing 4-4. Additionally,

“MySqlException” was implemented in “DAL.cs” to prevent database connection failure caused

by poor network signal.

Implementation of the applications

44

Listing 4-4: Code example for “StoreValue”

After the setup of the database and implementation of the database functions, the setup of the

hardware with Raspberry Pi will be introduced.

4.7.2 Hardware connection with Raspberry Pi

According to the requirement from the user, the temperature control device should be equipped on

the “Hand Dryer” hardware. Since the Raspberry Pi can be controlled remotely and gets desired

temperature from “DAO1” in database, it should also show this voltage on the “Hand Dryer” device.

Therefore, on the temperature control device, the “DAC 1” was connected to the “ADC 1” on

“Hand Dryer” so the desired temperature from the database could also be displayed on the hardware.

The detailed connection is shown in Figure 4-24. After hardware connection, the Android

application as well as the UWP application could be developed.

1. public void StoreValue(string name, double data)
2. {
3. System.Text.EncodingProvider ppp;
4. ppp = System.Text.CodePagesEncodingProvider.Instance;
5. Encoding.RegisterProvider(ppp);
6. string connsqlstring = "Server='ServerName';Port=3306;User Id=UserId;Pas

sword=Password;Database=Database1;charset=utf8";
7. MySqlConnection mySqlConnection = new MySqlConnection(connsqlstring);
8. try
9. {
10. mySqlConnection.Open();
11. string sqlstring = string.Format("UPDATE RaspiComm SET value ={0} WH

ERE text1='{1}'", data, name);//update values by names
12. MySqlCommand cmd = new MySqlCommand(sqlstring, mySqlConnection);
13. cmd.ExecuteNonQuery();
14. mySqlConnection.Close();
15. }
16. catch (MySqlException e)
17. {
18. // perform some action here, and then throw a new exception.
19. }
20. }

Implementation of the applications

45

Figure 4-24: Cable connection for remote control

4.7.3 Temperature control application modification

A new project solution called “TempCon” was created, and the main functionalities were same as

the previous application in “I2CADDA” project.

In human interface, 2 child pages was added into the “HomePage.cs”: the “ADC-DAC” page and

the “Micro Charts Display” page which showed two-line chart about the real-time temperature

curves.

According to Figure 4-25, in “ADC-DAC” page, a switch called “Control via phone” was added,

if the switch was toggled, the slider under “ADC 1” would be enabled and the user could change

the desired temperature value from 0 to 100. Then changed temperature was stored into the

database in row “DAO1”

Figure 4-25: Layout of "ADC-DAC" page

Implementation of the applications

46

In the “MainPage.xaml.cs”, the program first automatically initialized the I²C devices and reset all

the data in database to “0”, including the “status” value. Then it started the “MicroTimer” for

temperature control and the “Device.StartTimer” for data display in human interface. In the

“Device.StartTimer”, the data were read from the database every 1 second. And the temperature

data was stored in lists for “Microcharts” display.

In UWP project, the initialization of “MicroTimer” and the “OnTimedEvent” were modified in

“MainPage.xaml.cs”. According to Listing 4-5, during initialization, the “MicroTimer” started

another “Device.StartTimer” for communication with the database every 1 second.

Listing 4-5: Second "Device.StartTimer" for database communication in UWP application

4.7.4 Android application programming

Since the Android smartphone was used only for database communication, it was impossible to be

connected with any hardware devices. The Android application shared the basic methods from the

PCL project, so after the creation of the Android project in Xamarin.Forms and the realization of

database connection methods in “DAL.cs”, the Android application was already finished. The

interface “IReadWriteI2C” was implemented only with empty methods to avoid errors.

For Visual Studio debugging, the Android smartphone installed with Android 7.0 was connected

to the laptop by USB port. In Android operating system, “Developer Options” and the “USB

debugging” should be switched on in the “Setting” page. Then the Visual Studio could detect the

Android smartphone and debug the Android application on it.

4.7.5 Result of remote control application

After the development phase, the application was deployed both on Raspberry Pi and Android

smartphone. According to the requirement from the user, the Raspberry Pi should automatically

1. Device.StartTimer(TimeSpan.FromMilliseconds(1000), () =>
2. {
3. IDAL sqlOperation = DependencyService.Get<IDAL>();
4. status = sqlOperation.GetValue("status");
5. if (status == 1) //remote control
6. {
7. desiredTemp= sqlOperation.GetValue("DAO1");//get value from data

base
8. }
9. sqlOperation.StoreValue("AI0", x);
10. sqlOperation.StoreValue("AI1", w);
11. sqlOperation.StoreValue("DAO0", yn);
12. return true; // True = Repeat again
13. });

Implementation of the applications

47

run the temperature control application after it starts up. The Figure 4-26 shows the setting of

“TempCon.UWP” as the startup application in Windows Device Portal.

Figure 4-26: Setting of startup application in Windows Device Portal

Figure 4-27: Temperature control by Raspberry Pi locally

Finally the remote control of the temperature control application could be tested. Both the

Raspberry Pi and Android smartphone should run the application. According to Figure 4-27, in

remote control mode, the temperature control was working, and the real-time temperature could be

displayed on the touch screen. In addition, the Figure 4-28 shows that the “Microcharts” could also

Implementation of the applications

48

display the real-time temperature curve, which indicated that the temperate control application was

working correctly.

However, there is one limitation for the remote control, that is, the performance of the database

communication. As was stated by Ken (2013), the workload for the “MicroTimer” must be limited

[33]. If “MicroTimer” executes too many SQL operations, the time duration will be longer than the

time interval. As a result, performance of temperature control is influenced because “MicroTimer”

is unable to calculate the control voltage within 1 millisecond.

Figure 4-28: Temperature control by Android smartphone remotely

Despite of this disadvantage, the result has shown that the remote control of Raspberry Pi by

Android smartphone is possible. If the workload of “MicroTimer” can be rationally designed, the

performance of the new “TempCon” application is nearly identical to the previous temperature

control application. In general, Xamarin.Forms supports the cross-platform programming as well

as cross-platform communication by means of database. Alternatively, for remote control on

Raspberry Pi, the way of Bluetooth connection and other methods can be further investigated in

later experiments, and see whether these methods can improve the performance of the remote

control.

Implementation of the applications

49

4.8 Balance automation control program

In 2015, Microsoft introduced the Xamarin.Forms to reduce the effort for cross-platform

application development. Nowadays many software and programs are developed in C, Python, C#

and so on. Especially, in this paper, many original programs were based on Windows Forms in C#.

For further application development, it is important to find out whether it is convenient to transfer

a Windows Forms application to Xamarin.Forms application. In this section, a balance control

program on Windows Forms [17] was transferred to Xamarin.Forms UWP application, and the

developed time was recorded. Finally, the effort of the development phase was evaluated to achieve

a result.

4.8.1 Hardware connection to the balance control device

First, the Raspberry Pi was connected to the “USB ADDA” device. Then the “USB ADDA” was

connected to the balance control device according to Figure 4-29.

Figure 4-29: Cable connection between "USB ADDA" and balance control device

As can be seen in Figure 4-30, the balance control device had 2 main equipment for balance control:

a two-dimensional angle sensor and a pair of motors for two-dimensional position movement. It

detected the angle between the stick and the horizontal plane and moved the motors at X and Y

axis to keep the stick balanced.

Implementation of the applications

50

Figure 4-30: Structure of balance control device

4.8.2 Balance control program transformation to Xamarin.Forms

In the original application [17], there was only one C# file containing the codes. However, since

the “MicroTimer” was responsible for the balance control and it was only available on UWP

platform, the codes were separated into 2 files in Xamarin.Forms UWP project.

In the “I2CADDA” application, a new page called “Balance Control” was added into the

“HomePage.cs” and a C# program called “BalCon.cs” was created. As is shown in Figure 4-31, it

was responsible for the human interface interaction and system initialization.

On the other hand, the balance control algorithms and all the parameters were placed in

“MainPage.xaml.cs” in the UWP project. Therefore, in the PCL project, the “DependencyService”

was used again in “BalCon.cs” for setting parameters, reading ADC values and starting

“MicroTimer” for balance control every 6 milliseconds.

Since this task aims at evaluating the difficulties of transferring one existing C# program to Xam

arin.Forms platform, little emphasis will be put on the code, the detailed code can be found in the

 USB stick under Path “./I2CADDA/I2CADDA/I2CADDA.UWP/MainPage.xaml.cs”.

Implementation of the applications

51

Figure 4-31: Layout of "BalCon"

After the transformation process, the application was deployed to the Raspberry Pi. First, the ADCs

and the DACs should be initialized in “ADC-DAC” page. Second, in the “Balance Control” page,

the “Zero” button was clicked to move the motors into the middle of the panel. Third, the

“Start/Stop” button was clicked to initialize and start the “MicroTimer”. Then if the stick was kept

balanced manually, the “Äußer Regier Aktivieren” could be clicked to start the automatic balance

control program. Finally, the “Äußer Regier Deaktivieren” could stop the balance control program.

4.8.3 Result of balance control program transformation

The behavior of the balance control program on Raspberry Pi is shown in Figure 4-32. The

Raspberry Pi could control the balance, but the oscillation of the motors were larger than original

Windows Forms application. The behavior of the “BalCon” was different because the parameters

or the automation control algorithm steps might differ from the original one. To fix this problem,

additional configuration needs to be done. However, since this task aimed at investigating the

difficulties of application transformation to Xamarin.Forms, the main focus was the programming

time of the application instead of its functionality and performance. Therefore, the development

phase of the balance control program was finished.

The time duration of the development phase was measured by a digital stopwatch. In the end, for

an original program which had approximately 500 lines of codes without human interface part, it

took nearly 6 hours for transforming, modifying and testing the program on Xamarin.Forms. Most

problems might occur during the methods call by “DependencyService” and the parameter

configuration for control algorithms.

Implementation of the applications

52

Figure 4-32: Balance control by Raspberry Pi

In Brief, this experiment has indicated that it was convenient to transfer a balance control program

to Xamarin.Forms UWP application. However, since the human interface on Xamarin.Forms

should be realized in C# code, extra effort is needed to create a new human interface. In addition,

the implementation of “DependencyService” is also necessary on Xamarin.Forms. Considering

these limitations, it seems that for a large cross-platform application which contains more than 500

lines of codes, the Xamarin.Forms might be a suitable platform for the transformation. The time

duration may also depends on the experience of the developer. If the developer is familiar with the

Xamarin.Forms, then the effort as well as time duration required for transformation will be

considerably acceptable.

Summary

53

5 Summary
In this section, the conclusion as well as the outlook about the investigation of Raspberry Pi

programming and Xamarin.Forms are introduced.

5.1 Conclusion and evaluation

The purpose of the this study is to determine the possibilities and limitations of Raspberry Pi

programming with Windows 10 IoT operating system using C# and Xamarin.Forms. In this paper,

several programs were developed and some practical tests were conducted to evaluate the

Raspberry Pi and Xamarin.Forms.

The results of the tasks has shown that the Raspberry Pi and Xamarin.Forms are capable of

controlling the I²C devices and performing complex functionalities such as temperature automation

control and balance control. Their performance are similar to the original Windows Forms

applications or the electrical circuits and they are better than traditional Python programs on the

Raspbian, which was proved by comparing the timing performance to Python and testing the

performance of “MicroTimer”.

Moreover, the task of remote Raspberry PI control has proved that Xamarin.Forms supports and

improves the cross-platform programming and communication. And the transfer of a C#

application from one old platform to Xamarin.Forms is also convenient for the developers. In

addition, the implementation of the “Microcharts” in Xamarin.Forms also indicates that it is

possible and convenient to extend the functionalities of the Xamarin.Forms by other C# libraries

or plugins.

Specifically, from my perspective of view, Xamarin.Forms is a creative solution for application

development. The learning process requires some effort, but later during the development phase, it

may increase the efficiency of programming. According to the preference of the user, the content

page should be initialized by C# code, but this may increase the workload during implementation

because some visual elements or tutorials are only available in XAML. So in my opinion, the

creation of visual elements by XAML needs further research since this approach supports the

Model-View-ViewModel (MVVM) architectural model. It can separate the view from the data and

controller, which seems to make the code much clearer and maintainable.

Therefore, the possibility of Xamarin.Forms development on Raspberry Pi with Windows IoT can

be achieved.

 Xamarin.Forms offers another approach of cross-platform application development. It

makes the code more readable, understandable and maintainable. It can also reduce the

Summary

54

workload of the developers because it can separate the platform specific code and provide

uniform functionalities among each platform.

 Xamarin.Forms supports C# programming, so this could be a good platform for converting

the C# program form old platform and working on portable devices such as Windows 10

IoT.

 Raspberry Pi with Windows IoT can provide sufficient performance to run some complex

programs such as automation control, wireless communication and I²C device interaction.

Considering the fact that the trend of IoT device is becoming popular, Raspberry Pi could

be a suitable portable device for further practical use.

 Xamarin.Forms is extensible with many existing C# libraries and plugins, which can realize

many alternative functionalities easily.

However, there still exist some limitations during the experiment.

 The initialization of I²C devices is likely to have threading errors and crash the applications.

Therefore specific initialization steps and codes need to be implemented.

 The Xamarin.Forms supports limited UI elements. And visual elements such as check box

and radio button are unsupported right now. This may add difficulties during the

development.

 Due to the version compatibility of Xamarin.Forms and Windows 10 IoT, some third party

libraries or plugins are unsupported anymore.

 It seems to be impossible for Android, iOS and UWP project to access the PCL project and

read parameters, so the difficulties of implementation is increased. Same methods may be

implemented in several different projects, which consumed more resources and reduce the

maintainability.

In conclusion, the evidence of this paper suggests that Raspberry Pi with Windows 10 IoT and

Xamarin.Forms is a suitable platforms for cross-platform application development indeed. Even

though this is a new platform, it has shown its future potential during the investigation. The findings

from this study may make contributions to the developer to understand the characteristic of

Raspberry Pi and Xamarin.Forms. The programs in this thesis are practical examples for

programming engineering applications for I²C communication and automation control. Finally,

they may also provide suggestions about a new approach for software development.

5.2 Outlook

For further research, several factors still remain to be investigated. In addition, some approach in

the experiment can be improved.

Summary

55

 The remote control of the Raspberry Pi needs deeper study, a new communication way

between different platforms in Xamarin.Forms can be investigated. Right now, the remote

control is realized by database communication, but due to the delay of the database

connection, the performance of this approach is only suitable for simple applications. For

high-performance remote control, other methods can be further investigated, for instance,

Bluetooth or infrared ray.

 The remote control with iOS operating system can be implemented in further research to

check whether the database commination used in this paper is also feasible on iOS.

 The performance of Raspberry Pi with Xamarin.Forms requires further research, for

example, the complex calculation, control statements and database communication can be

tested and compared to Python and Raspbian again, so a more detailed understanding about

these technologies can be achieved and the developers can decide to use which technologies

according to the requirements of the applications.

 The creation of content page in Xamarin.Forms can be studied more. Now some visual

elements like “Microcharts” may only be created in XAML. So a comparison of the XAML

and C# can be conducted to find out with approach of content page creation is more

convenient and extensible.

 In further research, the system safety of the application can be taken into consideration,

especially in remote control.

Acknowledgement

56

6 Acknowledgement
First, I want to express my sincere thankfulness to my supervisor Prof. Dr. Bayerlein for providing

me with all kinds of facilities, environment, advices and continuous supports which help me to

finish my bachelor thesis.

In addition, I would like to express my deep gratefulness to M.Sc. Hanesová for giving various

suggestions during my bachelor thesis, and also for her efforts to support me during my study in

FHL.

I am also very grateful to my whole family, especially my parents, who keep supporting me in my

life and encouraging me to improve myself.

At last, I want to say thank you to my friends, my classmates and anyone who helped me in my life

and during my study, which enables me to overcome the difficulties and keep going.

Reference

57

7 Reference
[1] Raspberrypi.org. “Raspberry Pi - Teach, Learn, and Make with Raspberry Pi”, Raspberry Pi,

2018. [Online]. Available at: https://www.raspberrypi.org/about. [Accessed 31 May 2018].

[2] G. Singhpannu, A. M. Dawud and P. Gupta. “Design and Implementation of Autonomous Car

using Raspberry Pi”. International Journal of Computer Applications, 2015, 113(9):22-29.

[3] Ferdoush, S. and Xinrong Li. “Wireless Sensor Network System Design Using Raspberry Pi

and Arduino for Environmental Monitoring Applications”, Procedia Computer Science, 2014,

34.3-4:103-110.

[4] D. Bowater. “Mini Raspberry Pi computer goes on sale for £22”, Telegraph.co.uk, 2012.

[Online]. Available at: https://www.telegraph.co.uk/technology/news/9112841/Mini-Raspberry-

Pi-computer-goes-on-sale-for-22.html. [Accessed 30 May 2018].

[5] N. Friedman. “Announcing Xamarin 3”, Xamarin Blog, 2014. [Online]. Available at:

https://blog.xamarin.com/announcing-xamarin-3. [Accessed 31 May 2018].

[6] A. Hern. “Raspberry Pi 3: the credit card-sized 1.2GHz PC that costs $35”, The Guardian, 20

16. [Online]. Available at: https://www.theguardian.com/technology/2016/feb/29/raspberry-pi-3-l

aunch-computer-uk-bestselling. [Accessed 31 May 2018].

[7] Raspberrypi.org. “Raspbian - Raspberry Pi Documentation”, Raspberry Pi, 2018. [Online].

Available at: https://www.raspberrypi.org/documentation/raspbian. [Accessed 31 May 2018].

[8] Raspberrypi.org. “GPIO - Raspberry Pi Documentation”, Raspberry Pi, 2018. [Online].

Available at: https://www.raspberrypi.org/documentation/usage/gpio. [Accessed 31 May 2018].

[9] I2C Bus. “I2C - What's That?”, I2C Bus, 2018. [Online]. Available at: https://www.i2c-bus.org.

[Accessed 31 May 2018]

[10] Microsoft. “I2C transport”, Microsoft Docs, 2017. [Online]. Available at:

https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/the-i2c-transport. [Accessed

31 May 2018].

[11] User:Cburnett. “File:I2C.svg”, Wikimedia Commons, 2012. [Online]. Available at:

https://commons.wikimedia.org/wiki/File:I2C.svg. [Accessed 5 Jun. 2018].

[12] Team Rudra. “Board to Board Communication”, Medium, 2013. [Online]. Available at:

https://medium.com/@srmmarsroverteam/board-to-board-communication-a6ebe7423a4.

[Accessed 31 May 2018].

[13] Microsoft. “Windows.Devices.I2c Namespace - UWP app developer”, Microsoft Docs, 2018.

 [Online]. Available at: https://docs.microsoft.com/en-us/uwp/api/windows.devices.i2c. [Accesse

d 31 May 2018].

https://www.raspberrypi.org/about/
https://www.telegraph.co.uk/technology/news/9112841/Mini-Raspberry-Pi-computer-goes-on-sale-for-22.html
https://www.telegraph.co.uk/technology/news/9112841/Mini-Raspberry-Pi-computer-goes-on-sale-for-22.html
https://blog.xamarin.com/announcing-xamarin-3
https://www.theguardian.com/technology/2016/feb/29/raspberry-pi-3-launch-computer-uk-bestselling
https://www.theguardian.com/technology/2016/feb/29/raspberry-pi-3-launch-computer-uk-bestselling
https://www.raspberrypi.org/documentation/raspbian
https://www.raspberrypi.org/documentation/usage/gpio
https://www.i2c-bus.org/
https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/the-i2c-transport
https://commons.wikimedia.org/wiki/File:I2C.svg
https://medium.com/@srmmarsroverteam/board-to-board-communication-a6ebe7423a4
https://docs.microsoft.com/en-us/uwp/api/windows.devices.i2c

Reference

58

[14] Microsoft. “Introduction to the C# Language and the .NET Framework”, Microsoft Docs, 20

15. [Online]. Available at: https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduc

tion-to-the-csharp-language-and-the-net-framework. [Accessed 31 May 2018].

[15] C. Petzold, Creating Mobile Apps with Xamarin.Forms, Redmond, USA: Microsoft Press,

2016, p. 6-8.

[16] C. Petzold, Creating Mobile Apps with Xamarin.Forms, Redmond, USA: Microsoft Press,

2016, p. 21.

[17] J. Bayerlein, “Toolprogramme Bayerlein\WindfCsharp\SolWINDF 7.7.10.zip”, Lernraum der

Fachhochschule Lübeck, 2018. [Online]. Available at: https://lernraum.fh-

luebeck.de/course/view.php?id=1727. [Accessed: 06-Jun-2018].

[18] H. Liu, “Mobile Phone Cross Platform App development using C# and Xamarin Forms”,

Lernraum der Fachhochschule Lübeck, 2017. [Online]. Available at: https://lernraum.fh-

luebeck.de/mod/folder/view.php?id=85523. [Accessed: 02-Jun-2018].

[19] Microsoft. “.NET Standard”, Microsoft Docs, 2017. [Online]. Available at:

https://docs.microsoft.com/en-us/dotnet/standard/net-standard. [Accessed 31 May 2018].

[20] Microsoft. “Visual Studio IDE overview”, Microsoft Docs, 2018. [Online]. Available at:

https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide. [Accessed 31 May 2018].

[21] Microsoft. “Windows 10 IoT Core Dashboard”, Microsoft Docs, 2017. [Online]. Available a

t: https://docs.microsoft.com/en-us/windows/iot-core/connect-your-device/iotdashboard. [Access

ed 1 Jun. 2018].

[22] Microsoft. “Use your PC as a mobile hotspot”, Microsoft Support, 2017. [Online]. Available

at: https://support.microsoft.com/en-us/help/4027762/windows-use-your-pc-as-a-mobile-hotspot.

[Accessed 1 Jun. 2018].

[23] Raspberrypi.org. “Raspberry Pi Downloads - Software for the Raspberry Pi”, Raspberry Pi,

2018. [Online]. Available at: https://www.raspberrypi.org/downloads. [Accessed 2 Jun. 2018].

[24] Thonny.org. “Thonny, Python IDE for beginners”, Thonny, 2018. [Online]. Available at:

http://thonny.org. [Accessed 2 Jun. 2018].

[25] Tutorialspoint. “Python Strings”, Tutorialspoint, 2018. [Online]. Available at:

https://www.tutorialspoint.com/python/python_strings.htm. [Accessed 2 Jun. 2018].

[26] Microsoft. “Strings (C# Programming Guide)”, Microsoft Docs, 2015. [Online]. Available at:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings. [Accessed 1 Jun.

2018].

https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://lernraum.fh-luebeck.de/course/view.php?id=1727
https://lernraum.fh-luebeck.de/course/view.php?id=1727
https://lernraum.fh-luebeck.de/mod/folder/view.php?id=85523
https://lernraum.fh-luebeck.de/mod/folder/view.php?id=85523
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/visualstudio/ide/visual-studio-ide
https://docs.microsoft.com/en-us/windows/iot-core/connect-your-device/iotdashboard
https://support.microsoft.com/en-us/help/4027762/windows-use-your-pc-as-a-mobile-hotspot
https://www.raspberrypi.org/downloads
http://thonny.org/
https://www.tutorialspoint.com/python/python_strings.htm
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings

Reference

59

[27] Microsoft. “Using the StringBuilder Class in .NET”, Microsoft Docs, 2017. [Online].

Available at: https://docs.microsoft.com/en-us/dotnet/standard/base-types/stringbuilder.

[Accessed 1 Jun. 2018].

[28] AndiDog. “Are strings pooled in Python”, Stack Overflow, 2010. [Online]. Available at: http

s://stackoverflow.com/questions/2519580/are-strings-pooled-in-python?utm_medium=organic&u

tm_source=google_rich_qa&utm_campaign=google_rich_qa. [Accessed 1 Jun. 2018].

[29] J. Bayerlein, “Example I2C Raspi - Xamarin.Forms for Mr. Gu”, Lernraum der Fachhochsc

hule Lübeck, 2018. [Online]. Available at: https://lernraum.fh-luebeck.de/mod/folder/view.php?i

d=87019. [Accessed: 03-Jun-2018].

[30] Tutorialsteacher.com. “StringBuilder in C#”, Tutorialsteacher.com, 2015. [Online]. Available

at: http://www.tutorialsteacher.com/csharp/csharp-stringbuilder. [Accessed 2 Jun. 2018].

[31] Microsoft. “Timer Class”, Microsoft Developer Network, 2018. [Online]. Available at:

https://msdn.microsoft.com/en-us/library/system.timers.timer(v=vs.110).aspx. [Accessed 2 Jun.

2018].

[32] Microsoft. “Timer Class”, Microsoft Developer Network, 2018. [Online]. Available at:

https://msdn.microsoft.com/en-us/library/system.threading.timer(v=vs.110).aspx. [Accessed 2 Jun.

2018].

[33] Ken.loveday. “Microsecond and Millisecond C# Timer”, CodeProject, 2013. [Online]. Avail

able at: https://www.codeproject.com/Articles/98346/Microsecond-and-Millisecond-NET-Timer?

fid=1581582&df=90&mpp=25&sort=Position&view=Normal&spc=Relaxed&fr=21&prof=True.

 [Accessed 2 Jun. 2018].

[34] Microsoft. “Introduction to DependencyService”, Microsoft Docs, 2017. [Online]. Available

at: https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-servi

ce/introduction. [Accessed 2 Jun. 2018].

[35] C. Jensen and L. Anderson, Harvard graphics 3: the complete reference. Berkeley, CA:

Osborne McGraw-Hill, 1992, p. 413.

[36] R. Marinho. “XLabs/Xamarin-Forms-Labs”, Github, 2017. [Online]. Available at:

https://github.com/XLabs/Xamarin-Forms-Labs. [Accessed 2 Jun. 2018].

[37] OxyPlot.org. “OxyPlot”, OxyPlot, 2015. [Online]. Available at: http://www.oxyplot.org. [Ac

cessed 2 Jun. 2018].

[38] Al. Deniel. “Aloisdeniel/Microcharts”, Github, 2017. [Online]. Available at:

https://github.com/aloisdeniel/Microcharts. [Accessed 2 Jun. 2018].

https://docs.microsoft.com/en-us/dotnet/standard/base-types/stringbuilder
https://stackoverflow.com/questions/2519580/are-strings-pooled-in-python?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://stackoverflow.com/questions/2519580/are-strings-pooled-in-python?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://stackoverflow.com/questions/2519580/are-strings-pooled-in-python?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://lernraum.fh-luebeck.de/mod/folder/view.php?id=87019
https://lernraum.fh-luebeck.de/mod/folder/view.php?id=87019
http://www.tutorialsteacher.com/csharp/csharp-stringbuilder
https://msdn.microsoft.com/en-us/library/system.timers.timer(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.timer(v=vs.110).aspx
https://www.codeproject.com/Articles/98346/Microsecond-and-Millisecond-NET-Timer?fid=1581582&df=90&mpp=25&sort=Position&view=Normal&spc=Relaxed&fr=21&prof=True
https://www.codeproject.com/Articles/98346/Microsecond-and-Millisecond-NET-Timer?fid=1581582&df=90&mpp=25&sort=Position&view=Normal&spc=Relaxed&fr=21&prof=True
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction
https://github.com/XLabs/Xamarin-Forms-Labs
http://www.oxyplot.org/
https://github.com/aloisdeniel/Microcharts

Reference

60

[39] M. P. Groover, Fundamentals of modern manufacturing: materials, processes, and systems,

4th ed. Hoboken, NJ: J. Wiley & Sons, 2010, p.887.

[40] J. Bayerlein, “Basics of digital PID control”, Lernraum der Fachhochschule Lübeck, 2018.

[Online]. Available at: https://lernraum.fh-luebeck.de/mod/folder/view.php?id=88841. [Accesse

d: 02-Jun-2018].

[41] C. Terevinto, “Xamarin Forms - The application called an interface that was marshalled for a

different thread”, Stack Overflow, 2018. [Online]. Available at:

https://stackoverflow.com/questions/50136433/xamarin-forms-the-application-called-an-

interface-that-was-marshalled-for-a-di. [Accessed: 05-Jun-2018].

[42] J. Bayerlein, “Example program Bayerlein at meeting 6.2.2018”, Lernraum der Fachhochsch

ule Lübeck, 2018. [Online]. Available at: https://lernraum.fh-luebeck.de/mod/folder/view.php?id

=85520. [Accessed: 07-Jun-2018].

[43] Microsoft, “Stopwatch Class”, Microsoft Developer Network, 2018. [Online]. Available at:

https://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch(v=vs.110).aspx.

[Accessed: 12-Jun-2018].

https://lernraum.fh-luebeck.de/mod/folder/view.php?id=88841
https://stackoverflow.com/questions/50136433/xamarin-forms-the-application-called-an-interface-that-was-marshalled-for-a-di
https://stackoverflow.com/questions/50136433/xamarin-forms-the-application-called-an-interface-that-was-marshalled-for-a-di
https://lernraum.fh-luebeck.de/mod/folder/view.php?id=85520
https://lernraum.fh-luebeck.de/mod/folder/view.php?id=85520
https://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch(v=vs.110).aspx

List of Figures/Tables/Listings

61

8 List of Figures/Tables/Listings

8.1 List of Figures

Figure 2-1: The structure of the Raspberry Pi 3 Model B .. 4

Figure 2-2: Inter-Integrated Circuit (I²C) connection [11] ... 4

Figure 2-3: Xamarin C# libraries bind to native OS SDKs [15] .. 6

Figure 3-1: Device connection design .. 9

Figure 3-2: Use case diagram of the applications .. 10

Figure 3-3: Class diagram of "I2CADDA" UWP project .. 12

Figure 3-4: Class diagram of "I2CADDA" PCL project .. 13

Figure 3-5: Class diagram of remote application "TempCon" PCL project 14

Figure 3-6: Class diagram of remote application "TempCon" UWP project 15

Figure 4-1: The cable connection of Raspberry Pi ... 16

Figure 4-2: Touch screen connected with Raspberry Pi .. 17

Figure 4-3: Window of “Windows Device Portal” .. 18

Figure 4-4: Development component installed in Visual Studio ... 19

Figure 4-5: Visual Studio debug with local machine ... 19

Figure 4-6: Visual studio remote machine setup .. 20

Figure 4-7: I²C pin connection with Raspberry Pi ... 20

Figure 4-8: Steps of implementation of "DependencyService" [34] .. 26

Figure 4-9: Ports of "USB ADDA" device .. 27

Figure 4-10: “MicroTimer” minimum interval test result .. 27

Figure 4-11: Raspberry Pi connection with "USB ADDA" ... 28

Figure 4-12: The original Windows Forms application ... 29

Figure 4-13:The new UWP application of ADC DAC .. 30

Figure 4-14: Disable and enable the switches .. 31

Figure 4-15: UWP application “ADC-DAC” test result .. 33

Figure 4-16: Two-line chart realized manually by “Microcharts” ... 36

Figure 4-17: “Microcharts” display on Raspberry Pi ... 36

Figure 4-18: Structure of temperature control device .. 38

Figure 4-19: The input nodes and output nodes of temperature control device 38

Figure 4-20: Structure and cable connection of "Hand Dryer" device ... 39

Figure 4-21: Layout of temperature automation control program ... 40

Figure 4-22: Structure of data table "RaspiComm" in MySQL Workbench 42

Figure 4-23: Local control and remote control of Raspberry Pi .. 43

Figure 4-24: Cable connection for remote control ... 45

Figure 4-25: Layout of "ADC-DAC" page .. 45

Figure 4-26: Setting of startup application in Windows Device Portal ... 47

Figure 4-27: Temperature control by Raspberry Pi locally .. 47

Figure 4-28: Temperature control by Android smartphone remotely .. 48

Figure 4-29: Cable connection between "USB ADDA" and balance control device 49

Figure 4-30: Structure of balance control device ... 50

https://d.docs.live.net/0ade5d842d3c9052/IntroductionV10.docx#_Toc516490487
https://d.docs.live.net/0ade5d842d3c9052/IntroductionV10.docx#_Toc516490488

List of Figures/Tables/Listings

62

Figure 4-31: Layout of "BalCon" ... 51

Figure 4-32: Balance control by Raspberry Pi ... 52

Figure 10-1: Mockup of Page "ADC-DAC" .. 64

Figure 10-2: Mockup of Page "Chart" ... 64

Figure 10-3: Mockup of Page "Temperature" .. 65

Figure 10-4: Mockup of Page "Balance" ... 65

Figure 10-5: Mockup of Android remote control application .. 66

Figure 10-6: Element names in "ADC-DAC" .. 69

Figure 10-7: Element names in "Micro Charts Display" ... 69

Figure 10-8: Element names in "Temperature Control" .. 70

Figure 10-9: Element names in "Balance Control" .. 70

Figure 10-10: Element names in Android remote control “TempCon” ... 71

8.2 List of Tables

Table 4-1: Run time comparison between C# and Python ... 22

Table 4-2: Control algorithm steps... 40

Table 4-3: Time comparison of temperature control ... 41

Table 10-1: List of human interface interaction methods .. 67

Table 10-2: List of I2C device management methods ... 68

Table 10-3: List of ADC/DAC communication methods .. 68

8.3 List of Listings

Listing 4-1: Screen resolution information .. 17

Listing 4-2: String append codes in C# .. 22

Listing 4-3: Implementation of "MasterDetailPage" and “Microcharts” 35

Listing 4-4: Code example for “StoreValue” ... 44

Listing 4-5: Second "Device.StartTimer" for database communication in UWP application 46

Abbreviation

63

9 Abbreviation

 IDE Integrated development environment, software used for software development

 UWP Universal Windows Platform, a portable operating system introduced by

Microsoft.

 SDA Serial data-line, an I²C line for data transmission

 SCL Serial clock-line, an I²C line for clock signal transmission

 I²C Inter-Integrated Circuit, a technology used for electronic device interconnection

 PCL Portable Class Library, a project share strategy supported by Xamarin.Forms

 SAP Shared Asset Project, a project share strategy supported by Xamarin.Forms

 DLL Dynamic-Link Library, a file storing frequently used code

 ADC Analog to digital converter

 DAC Digital to analog converter

 PID Proportional–integral–derivative controller, an algorithm used in automation

control

 IoT Internet of Things, electronic devices which are connected to the Internet and

communicate with each other

Appendix

64

10 Appendix
The Appendix provides some additional information about the thesis, including the mockup of the

application, the methods description about program “ADC-DAC”, visual element names in each

applications and reference information about the old Windows Forms applications.

10.1 Mockup of the applications

Figure 10-1 shows the mockup design of the program “ADC-DAC” in Section 4.4. The left-hand

side displays the master page as the navigation bar and the left-hand side shows the main page of

“ADC-DAC”.

Figure 10-1: Mockup of Page "ADC-DAC"

Figure 10-2 shows the mockup design of the program “MicroChartsView” in Section 4.5. The

detailed page shows the “Microcharts” display.

Figure 10-2: Mockup of Page "Chart"

Appendix

65

Figure 10-3 shows the mockup design of the program “TempControl” in Section 4.6. The user can

click the start button to use Raspberry Pi and control the temperature on “Hand Dryer”.

Figure 10-3: Mockup of Page "Temperature"

Figure 10-4 shows the mockup design of the program “BalCon” in Section 4.5. The user can use

Raspberry Pi and control the balance on the balance control device.

Figure 10-4: Mockup of Page "Balance"

Figure 10-5 shows the mockup design of the application “TempCon” in Section 4.5. The user can

use Android to control the Raspberry Pi remotely and control the temperature on “Hand Dryer”.

The user can also see the temperature curves on “Chart” page.

Appendix

66

Figure 10-5: Mockup of Android remote control application

10.2 Method descriptions in “ADC-DAC” program

The following tables are the description about the main methods in program “ADC-DAC” which

are responsible for human interface interaction, I²C device management and ADC/DAC

communication.

10.2.1 The human interface interaction methods

No. Method Name Description

1 void SliAo0_ValueChanged(object sender,

ValueChangedEventArgs e)

Get the change value of the Slider

“sliAo0” and show the output value in

the “Ao0”, output the corresponding

analog voltage at AO 0

2 void SliAo1_ValueChanged(object sender,

ValueChangedEventArgs e)

Get the change value of the Slider

“sliAo1” and show the output value in

the “Ao1”, output the corresponding

analog voltage at AO 1

3 void Ao0_TextChanged(object sender,

TextChangedEventArgs e)

Process the input value of the Entry

“Ao0” and set the corresponding value

of Slider “sliAo0”

Appendix

67

4 void Ao1_TextChanged(object sender,

TextChangedEventArgs e)

Process the input value of the Entry

“Ao1” and set the corresponding value

of Slider “sliAo1”

5 bool CheckInput(string text) Get the string of Entry “Ao0”/ “Ao1”

and check whether it is a float

6 int ParseString(string text) Get the string of Entry “Ao0”/ “Ao1”

and parse the string to float

7 void DACPicker_SelectedIndexChanged(object

sender, EventArgs e)

Get the selected index of the DAC

output mode and set the maximum and

minimum value of the Slider “sliAo0”

and “sliAo1”, reset the timer and clear

the ADC input voltage record list

“entries0” and “entries1”

8 void VD_Toggled(object sender,

ToggledEventArgs e)

Clear the “Gain” picker content and

add new items into it, set the

corresponding voltage divider gain

factor

9 void Volt_SelectedIndexChanged(object

sender, EventArgs e)

Get the corresponding gain index

10 void OldDAC_Toggled(object sender,

ToggledEventArgs e)

Set the Corresponding DAC 0 address

to “0x60” or “0x62”

11 void SecDAC_Toggled(object sender,

ToggledEventArgs e)

Set the second DAC view element

visible or invisible

Table 10-1: List of human interface interaction methods

10.2.2 The I²C device management methods

No. Method Name Description

1 void Init_Clicked(object sender, EventArgs e) Initialize the ADCs and DACs,

configure them according to the

selected gain, input voltage type and

other parameters, initialize and start the

application

2 void ConfigADCs() Configure the ADCs after changing the

gain or input voltage type.

3 void ReActive_Clicked(object sender,

EventArgs e)

Reconfigure the ADCs and reset the

system status (data list for chart display

and system timer)

Appendix

68

4 void Hz_SelectedIndexChanged(object sender,

EventArgs e)

Change the bus speed of the I²C devices

and reset the system status (data list for

chart display and system timer)

5 void PositivVol_Toggled(object sender,

ToggledEventArgs e)

Change the input voltage type for the

old ADDA hardware, reconfigure the

ADCs and reset the system status (data

list for chart display and system timer)

6 void SecADC_Toggled(object sender,

ToggledEventArgs e)

Set the second ADC view element

visible or invisible

Table 10-2: List of I2C device management methods

10.2.3 The ADC/DAC communication methods

No. Method Name Description

1 void InputI2C(int chan, ref double val) Read the input voltage from the target

ADC and return the value

2 void OutputI2C(int chan, double val) Write the out voltage to the target DAC

3 void SaveData(string time, double value, int

dev)

Save time and input voltage to the

Entry list

4 void ShiftLeft(int dev, Entry newElement) Shift the data in the list to left if the

volume of the list exceed to maximum

limitation

5 void InitSecondTimer(int interval) Initialize and start the timer to read data

from ADCs and display it in the human

interface

Table 10-3: List of ADC/DAC communication methods

Appendix

69

10.3 Element names of the applications

Figure 10-6: Element names in "ADC-DAC"

Figure 10-7: Element names in "Micro Charts Display"

Appendix

70

Figure 10-8: Element names in "Temperature Control"

Figure 10-9: Element names in "Balance Control"

Appendix

71

Figure 10-10: Element names in Android remote control “TempCon”

10.4 Information about original Windows Forms application

For checking the reference code in Windows Forms application “SolWINDF 7.7.8”, the path of

these programs are given as follows.

 “ADC-DAC”: “SolWINDF 7.7.8\projWindf\Hardwaretools\I2CCH341.cs”

 “BalCon”: “SolWINDF 7.7.8\projWindf\Hardwaretools\Formxypendel.cs”

For checking the reference code in Xamarin.Forms application “AppBayFinal2017 V3 kompakt”,

the path of these programs are given as follows.

 I²C initialization and configuration: “AppBayFinal2017 V3 kompakt\AppBayFinal2017\A

ppBayFinal2017.UWP\MainPage.xaml.cs”, “AppBayFinal2017 V3 kompakt\AppBayFina

l2017\AppBayFinal2017\ADC-DAC.cs”

 ADC/DAC input and output methods: “AppBayFinal2017 V3 kompakt\AppBayFinal2017

\AppBayFinal2017\ADC-DAC.cs”

 MasterDetailPage: “AppBayFinal2017 V3 kompakt\AppBayFinal2017\AppBayFinal2017

\PageMain.cs”, “AppBayFinal2017 V3 kompakt\AppBayFinal2017\AppBayFinal2017\Pa

geFetchData.cs”

